|本期目录/Table of Contents|

[1]朱一龙,邢志祥,郝永梅,等.基于IEEMD样本熵分析的管道泄漏定位[J].中国安全生产科学技术,2019,15(12):17-22.[doi:10.11731/j.issn.1673-193x.2019.12.003]
 ZHU Yilong,XING Zhixiang,HAO Yongmei,et al.Localization of pipeline leakage based on IEEMD sample entropy analysis[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(12):17-22.[doi:10.11731/j.issn.1673-193x.2019.12.003]
点击复制

基于IEEMD样本熵分析的管道泄漏定位
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
15
期数:
2019年12期
页码:
17-22
栏目:
特邀专栏
出版日期:
2019-12-31

文章信息/Info

Title:
Localization of pipeline leakage based on IEEMD sample entropy analysis
文章编号:
1673-193X(2019)-12-0017-06
作者:
朱一龙邢志祥郝永梅吴洁严欣明岳云飞
(1.常州大学 环境与安全工程学院,江苏 常州 213164;
2.江苏特种设备安全监督检验研究院常州分院,江苏 常州 213161)
Author(s):
ZHU Yilong XING Zhixiang HAO Yongmei WU Jie YAN Xinming YUE Yunfei
(1.School of Environmental & Safety Engineering,Changzhou University,Changzhou Jiangsu 213164,China;
2.Special Equipment Safety Supervision and Inspection Institute of Jiangsu Province Changzhou Branch,Changzhou Jiangsu 213161,China)
关键词:
管道泄漏改进的集合经验模态分解(IEEMD)样本熵精确定位
Keywords:
pipeline leakage improved ensemble empirical mode decomposition (IEEMD) sample entropy accurate localization
分类号:
X933.4
DOI:
10.11731/j.issn.1673-193x.2019.12.003
文献标志码:
A
摘要:
为降低城市管道泄漏定位误差,提出1种改进的集合经验模态分解(IEEMD)样本熵分析的管道多点泄漏定位方法。首先通过在EEMD中添加自相关函数计算和EMD算法,得到IEEMD;然后应用IEEMD可将原始泄漏信号直接去噪并分解为真实信号分量和冗余分量,经样本熵分析计算剔除冗余分量,获得有效泄漏信号;最后根据互相关时延计算和声发射时差定位法精确计算泄漏点位置。结果表明:该方法泄漏信号提取效果好、计算效率更高,有效提高了信号的信噪比,降低了信号的均方误差;该方法将管道泄漏定位误差降低至4.06%,较大程度提高了管道泄漏定位精确度。
Abstract:
In order to reduce the localization error of urban pipeline leakage,a localization method of pipeline multipoint leakage based on the improved ensemble empirical mode decomposition (IEEMD) sample entropy analysis was put forward.Firstly,the improved IEEMD was obtained by adding the autocorrelation function calculation and the EMD algorithm into the EEMD.Then the IEEMD was applied to directly denoise the original leakage signals and decompose them into the real signal components and redundant components,and the redundant components were removed through the sample entropy analysis calculation to obtain the effective leakage signals.Finally,the location of the leakage point was accurately calculated according to the crosscorrelation timedelay calculation and acoustic emission time difference location method.The results showed that the method had good extraction effect and higher calculation efficiency of the leakage signals,which effectively improved the signaltonoise ratio and reduced the mean square error of the signals.In addition,this method reduced the localization error of pipeline leakage to 4.06%,which greatly improves the accuracy of pipeline leakage localization.

参考文献/References:

[1]郝永梅,徐明,李秀中,等.基于广义概念的城市燃气管道泄漏精确定位[J].工业安全与环保,2016,42(1):80-84. HAO Yongmei,XU Ming,LI Xiuzhong,et al.The precise location of city gas pipeline leak based on the generalized concept[J].Industrial Safety and Environmental Protection,2016,42(1):80-84.
[2]郝永梅,覃妮,邢志祥,等.基于VMD分量相对熵分析的压力管道泄漏定位[J].中国安全科学学报,2018,28(10):124-130. HAO Yongmei,QIN Ni,XING Zhixiang,et al.Pressure pipeline leakage location based on relative entropy analysis of VMD component[J].Chinese Journal of Safety Science,2018,28(10):124-130.
[3]刘炜,刘宏昭.检测与定位管道泄漏的图像处理方法研究[J].控制工程,2014,21(2):294-297. LIU Wei,LIU Hongzhao.Application of image processing technology on detection and location of pipeline leak[J].Control Engineering of China,2014,21(2):294-297.
[4]赵玲,刘小峰,娄路.复小波分解联合SVD提取振动信号非平稳特征[J].振动测试与诊断,2015,35(4):672-676,797. ZHAO Ling,LIU Xiaofeng,LOU Lu.The non-stationary characteristics of vibration signals extracted by complex wavelet decomposition combined with SVD[J].Journal of Vibration Measurement and Diagnosis,2015,35(4):672-676,797.
[5]孙灵芳,徐曼菲,朴亨,等.基于改进CEEMD超声检测信号自适应降噪[J].振动与冲击,2017,36(20):225-232. SUN Lingfang,XU Manfei,PU Heng,et al.Adaptive noise reduction based on improved CEEMD ultrasonic detection signal[J].Journal of Vibration and Shock,2017,36(20):225-232.
[6]王秀芳,王昕.EEMD近似熵和支持向量机的管道泄漏特征向量提取研究[J].化工自动化及仪表,2015,42(11):1226-1229. WANG Xiufang,WANG Xin.Research on feature vector extraction of pipeline leakage based on EEMD approximate entropy and support vector machine[J].Chemical Industry Automation and Instrumentation,2015,42 (11):1226-1229.
[7]何俊.齿轮箱振动特性分析与智能故障诊断方法研究[D].浙江:浙江大学,2018.
[8]黄振峰,刘永坚,毛汉颖,等.基于K熵和关联维数的声发射信号特征分析[J].振动与冲击,2017,36(15):210-214. HUANG Zhenfeng,LIU Yongjian,MAO Hanying,et al.Characteristics of acoustic emission signals in metal fatigue damage process based on K entropy and correlation dimension[J].Journal of Vibration and Shock,2017,36(15):210-214.
[9]王宜静,谭海燕.基于多维度互近似熵的滚动轴承故障诊断方法研究[J].机械设计与研究,2019,35(1):110-112,124. WANG Yijing,TAN Haiyan.Study on fault diagnosis method of rolling bearing based on multi-dimensional reciprocal entropy[J].Machinery Design and Research,2019,35(1):110-112,124.
[10]李余兴,李亚安,陈晓,等.一种基于样本熵与EEMD的舰船噪声特征提取[J].水下无人系统学报,2018,26(1):28-34. LI Yuxing,LI Yaan,CHEN Xiao,et al.A Feature extraction method of ship radiated noise based on sample entropy and EEMD[J].Journal of Underwaters Unmanned Systems,2018,26(1):28-34.
[11]杨凯.基于ICEEMD的地震信号去噪[J].工程地球物理学报,2017,14(6):648-657. YANG Kai.Denoising of seismic signals based on ICEMED[J].Chinese Journal of Engineering Geophysics,2017,14(6):648-657.
[12]殷琴.盲源分离算法在管道泄漏检测中的应用研究[D].黑龙江:东北石油大学,2013.
[13]刘延雷,陈涛,杨志军,等.可变径管道漏磁检测有限元仿真与实验研究[J].中国安全生产科学技术,2016,12(12):42-47. LIU Yanlei,CHEN Tao,YANG Zhijun,et al.FEM simulation and experimental research on magnetic flux leakage detection of variable diameter pipelines [J].Journal of Safety Science and Technology,2016,12 (12):42-47.
[14]沈功田.声发射检测技术及应用[M].北京:科学出版社,2015.
[15]蓝朝逊,李俊,史君林,等.埋地PE燃气管道弯头挖掘破坏有限元分析[J].中国安全生产科学技术,2018,14(8):86-93. LAN Chaoxun,LI Jun,SHI Junlin,et al.Finite element analysis of excavation failure of buried PE gas pipeline elbow[J].Journal of Safety Science and Technology,2018,14 (8):86-93.

相似文献/References:

[1]郝永梅,邢志祥,邵辉,等.压力管道泄漏声发射源定位的实验研究[J].中国安全生产科学技术,2011,7(6):140.
 HAO Yong-mei,XING Zhi-xiang,SHAO Hui,et al.Experiment research on acoustic emission source location of leakage of pressure pipelines[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(12):140.

备注/Memo

备注/Memo:
收稿日期: 2019-12-11
* 基金项目: 国家自然科学基金项目(51574046);江苏省重点研发计划专项项目(BE2018642);江苏省研究生科技创新项目(KYCX19_1797);常州市科技支撑计划(社会发展)项目(CE20185024)
作者简介: 朱一龙,硕士研究生,主要研究方向为油气储运安全。
通信作者: 郝永梅,硕士,副教授,主要研究方向为消防工程及油气储运风险分析。
更新日期/Last Update: 2020-01-09