|本期目录/Table of Contents|

[1]陈光,景伟,王志刚,等.火源功率对室内变压器火灾燃烧特性影响研究[J].中国安全生产科学技术,2019,15(7):186-192.[doi:10.11731/j.issn.1673-193x.2019.07.030]
 CHEN Guang,JING Wei,WANG Zhigang,et al.Study on influence of fire source power on combustion characteristics of indoor transformer fire[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(7):186-192.[doi:10.11731/j.issn.1673-193x.2019.07.030]
点击复制

火源功率对室内变压器火灾燃烧特性影响研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
15
期数:
2019年7期
页码:
186-192
栏目:
职业安全卫生管理与技术
出版日期:
2019-07-31

文章信息/Info

Title:
Study on influence of fire source power on combustion characteristics of indoor transformer fire
文章编号:
1673-193X(2019)-07-0186-07
作者:
陈光1景伟2王志刚1徐亮1陈鹏2
(1.南瑞集团有限公司(国网电力科学研究院有限公司),江苏 南京 211000;
2.中国矿业大学(北京) 应急管理与安全工程学院,北京 100086)
Author(s):
CHEN Guang1 JING Wei2 WANG Zhigang1 XU Liang1 CHEN Peng2
(1.NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing Jiangsu 211000, China;
2.School of Emergency Management and Safety Engineering, China University of Mining & Technology Beijing, (Beijing) 100086, China)
关键词:
变压器火灾火源功率烟气浓度温度分布
Keywords:
transformer fire fire source power gas concentration temperature distribution
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2019.07.030
文献标志码:
A
摘要:
为了研究不同火源条件下变压器火灾动力学过程,利用全尺寸变压器火灾试验,验证了隐蔽、立体、多尺度的变压器火灾数值模拟的有效性,模拟5,10,15,18 MW火源功率下变压器室内火灾烟气蔓延、温度分布变化。研究结果表明:火源功率对烟气蔓延速度和温度分布影响较大,当火源功率在18 MW以内时,变压器油燃烧时间在30 s内,产生的热均不会使变压器室内壁面和顶棚处的烟气温度超过300 ℃,没有达到混凝土的耐火极限。
Abstract:
The transformer oil fire is a highintensity turbulent combustion phenomenon, and its gestation, generation and development include the physical and chemical effects such as turbulent flow, phase change, heat and mass transfer, and complex chemical reactions. In order to study the dynamic process of transformer fire under different conditions of fire source, the fullscale tests of transformer fire was used to verify the validity of concealed, threedimensional and multiscale numerical simulation of transformer fire, and the smoke spreading and temperature distribution in the transformer room under the fire source power of 5, 10, 15, 18 MW were simulated. The results showed that the fire source power had great influence on the smoke spreading speed and temperature distribution. When the fire source is less than 18MW and the burning time of the transformer oil is within 30 s, the heat generated will not make the flue gas temperature at the wall and ceiling in the transformer room exceed 300 ℃, which does not reach the fire resistance limit of concrete.

参考文献/References:

[1]范维澄.火灾风险评估方法学[M].北京:科学出版社,2004.
[2]SUZUKI K, SUGAWA O, YAMAGISHI A, et al. Experimental study on ignition and combustionbehaviors of insulation fluids for transformer using cone calorimeter[J]. The transactions of the Institute of Electrical Engineers of Japan. B, A publication of Power and Energy Society, 2007, 127(7):797-802.
[3]CHATRIS J M. Experimental study of burning rate in hydrocarbon pool fires[J]. Combustion & Flame, 2001, 126(1):1373-1383.
[4] NOVOZHILOV V, KOSEKI H. CFD Prediction of pool fire burning rates and fame feedback[J]. Combustion Science and Technology, 2004, 176(8):1283-1307.
[5]R KARTHIK, T SREE RENGA RAJA, R MADAVAN. Enhancement of critical characteristics of transformer oil using nanomaterials[J]. Arabian Journal for Science and Engineering, 2013, 38:2725-2733.
[6]GOTTUK D T, WHITE D A. Liquid fuel fires[M]. SFPE Hand Book of Fire Protection Engineering, 2016.
[7]MCCAFFREY B. Purely buoyant diffusion flames-some experimental results. NBSIR 79-1910, National Bureau of Standards, Washington, 1979.
[8]焦艳.多油池火源燃烧特性的实验与理论研究[D]. 合肥:中国科学技术大学, 2018.
[9]张孝春. 不同火源形状下射流火羽流及顶棚射流特征参数演化行为研究[D]. 合肥:中国科学技术大学, 2014.
[10]BABRAUSKAS V. Estimating large pool fire burning rates[J]. Fire Technology, 1983, 19(4):251-261.
[11]GRITZO L A, SIVATHANU Y R, Gill W. Transient measurements of radiative properties, soot volume fraction and soot temperature in a large pool fire[J]. Combustion Science and Technology, 1998, 139(1):113-136.
[12]Guide for transformer fire safety practices[R].Working Group A2.33. Paris, France: CIGRE, 2013.
[13]党晓贝. 不同边沿高度条件下正庚烷油池火燃烧特性研究[D]. 合肥:中国科学技术大学, 2018.
[14]NAKAKUKI A. Heat transfer in small scale pool fires[J]. Combustion & Flame, 1994, 96(3):311-324.
[15]杨凯,吕淑然,王超群.基于FDS的木成涧煤矿井下火灾数值模拟[J].安全,2013,34(2):4-7.YANG Kai, LYU Shuran, WANG Chaoqun. Numerical simulation of underground fire in Muchengjian coal mine based on FDS [J] Safety & Security,2013,34(2):4-7.
[16]许秦坤,周煜琴,林朋,等.基于FDS某铅锌矿矿井火灾数值模拟[J].玻璃,2013,40(12):28-32.XU Qinkun, ZHOU Yuqin, LIN Peng, et al. Numerical simulation to certain lead-zinc mine fire based on FDS [J] Glass, 2013, 40(12):28-32.
[17]汤静,石必明,陈昆.典型结构走廊火灾烟气流场的数值模拟研究[J]. 中国安全生产科学技术, 2015, 11(10):33-37.TANG Jing,SHI Biming,CHEN Kun.Numerical simulation of fire smoke flow in typical structure of building corridor [J].Journal of Safety Science and Technology,2015, 11(10):33-37.
[18]中华人民共和国住房和城乡建设部.建筑设计防火规范:GB 50016—2014[S].北京:中国计划出版社,2015.

相似文献/References:

[1]刘晓阳,李炎锋,李俊梅,等.纵向通风条件下对隧道内烟气运动影响 因素的实验研究[J].中国安全生产科学技术,2012,8(4):24.
 LIU Xiao yang,LI Yan feng,LI Jun mei,et al.Experimental study on the effect of longitudinal ventilation and factors on smoke movement in tunnels[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(7):24.
[2]李垣志,牛国庆,张轩轩.城市公路隧道火灾近火源区长度的研究[J].中国安全生产科学技术,2017,13(12):43.[doi:10.11731/j.issn.1673-193x.2017.12.007]
 LI Yuanzhi,NIU Guoqing,ZHANG Xuanxuan.Research on length of area near fire source in urban highway tunnel fire[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(7):43.[doi:10.11731/j.issn.1673-193x.2017.12.007]
[3]张轩轩,牛国庆,李垣志,等.不同火灾规模下隧道水幕线性喷水强度的研究[J].中国安全生产科学技术,2018,14(9):164.[doi:10.11731/j.issn.1673-193x.2018.09.026]
 ZHANG Xuanxuan,NIU Guoqing,LI Yuanzhi,et al.Study on linear spray intensity of water curtain in tunnel under different fire scales[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(7):164.[doi:10.11731/j.issn.1673-193x.2018.09.026]

备注/Memo

备注/Memo:
收稿日期: 2019-05-12
* 基金项目: 南瑞集团科技项目(5246MK190001)
作者简介: 陈光,硕士研究生,高级工程师,主要研究方向为变电站消防、综合自动化、新能源集控、电力电子技术等。
通信作者: 陈鹏,博士,教授,主要研究方向为火灾动力学实验诊断和数值模拟、典型工业火灾探测和控制等。
更新日期/Last Update: 2019-08-07