|本期目录/Table of Contents|

[1]蔡运雄,杜扬,王世茂,等.封闭管道油气爆炸超压及火焰传播特性[J].中国安全生产科学技术,2019,15(6):61-66.[doi:10.11731/j.issn.1673-193x.2019.06.010]
 CAI Yunxiong,DU Yang,WANG Shimao,et al.Overpressure and flame propagation characteristics of gasolineair mixture explosion in closed tube[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(6):61-66.[doi:10.11731/j.issn.1673-193x.2019.06.010]
点击复制

封闭管道油气爆炸超压及火焰传播特性
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
15
期数:
2019年6期
页码:
61-66
栏目:
职业安全卫生管理与技术
出版日期:
2019-06-30

文章信息/Info

Title:
Overpressure and flame propagation characteristics of gasolineair mixture explosion in closed tube
文章编号:
1673-193X(2019)-06-0061-06
作者:
蔡运雄杜扬王世茂刘冲胡文超张霖
(陆军勤务学院 油料系,重庆 401311)
Author(s):
CAI Yunxiong DU Yang WANG Shimao LIU Chong HU Wenchao ZHANG Lin
(Department of Petroleum, Army Logistics University, Chongqing 401311, China)
关键词:
油气封闭管道爆炸超压Tulip火焰
Keywords:
gasolineair mixture closed tube explosion overpressure Tulip flame
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2019.06.010
文献标志码:
A
摘要:
对油气在封闭管道内的爆炸特性进行研究,发现爆炸超压发展过程可以分为3个阶段:第1次超压上升阶段、第2次超压上升阶段和超压下降阶段。初始油气浓度对爆炸初始阶段的发展有很大影响,油气浓度为1.73%时发展最激烈;当初始油气浓度较高时,在最大超压峰值附近,会产生压力振荡现象;初始油气浓度对Tulip火焰的形成及发展有较大影响,各种浓度油气的爆炸,都有形成Tulip火焰的趋势;当油气浓度适中时,Tulip火焰会一直传播到管道末端,当油气浓度较高或较低时,火焰锋面会经由鲨鱼嘴形状火焰转变为刀尖形火焰,当初始油气浓度为1.73%时,最容易发展形成Tuilp火焰。
Abstract:
The explosion characteristics of gasolineair mixture in the closed tube were studied. The results showed that the development process of explosion overpressure could be divided into three stages, namely the first overpressure rise stage, the second overpressure rise stage, and the overpressure drop stage. The initial concentration of gasolineair mixture had a great impact on the development of the initial stage of explosion, and the development was the most intense at the concentration of 1.73%. When the initial concentration was high, the pressure oscillation occurred near the maximum overpressure peak. The initial concentration of gasolineair mixture had a great influence on the formation and development of Tulip flame, and under various concentrations, there were the tendency to form the Tulip flame. When the concentration was moderate, the Tulip flame would propagate to the end of tube. Whatever the concentration was higher or lower, the flame front would change to a knifepoint flame through the shark mouth shape flame, and the Tulip flame was most likely to form when the initial concentration was 1.73%.

参考文献/References:

[1]HU E, HUANG Z, HE J, et al. Experimental and numerical study on laminar burning velocities and flame instabilities of hydrogen-air mixtures at elevated pressures and temperatures[J]. International Journal Of Hydrogen Energy, 2009, 34(20): 8741-8755.
[2]RAZUS D, MITU M, GIURCANV, et al. Methane-unconventional oxidant flames. Laminar burning velocities of nitrogen-diluted methane-N2O mixtures[J]. Process Safety and Environmental Protection, 2018, 114: 240-250.
[3]GIURCAN V, MITU M, RAZUSD, et al. Pressure and temperature influence on propagation indices of n-butane-air gaseous mixtures[J]. Process Safety and Environmental Protection, 2017, 111: 94-101.
[4]DONG C, ZHOU Q, ZHAO Q, et al. Experimental study on the laminar flame speed of hydrogen/carbon monoxide/air mixtures[J]. Fuel, 2009, 88(10): 1858-1863.
[5]温小萍, 武建军, 解茂昭. 瓦斯爆炸火焰结构与压力波的耦合规律[J]. 化工学报, 2013, 64(10): 3871-3877. WEN Xiaopin, WU Jianjun, XIE Maozhao. Coupled relationship between flame structure and pressure wave of gas explosion[J]. Journal of Chemical Industry and Engineering, 2013, 64(10): 3871-3877.
[6]GRIFFITHS J, RILEY M J W, BORMAN A, et al. Effect of flow velocity and temperature on ignition characteristics in laser ignition of natural gas and air mixtures[J]. Optics and Lasers in Engineering, 2015, 66: 132-137.
[7]郭丹彤, 吕淑然, 杨凯. 障碍物布置对气体爆炸压力场的影响效果研究[J]. 中国安全生产科学技术, 2015, 11(9): 88-93. GUO Dantong, LYU Shuran, YANG Kai. Research on impact effect of obstacle arrangement to pressure field of gas explosion[J]. Journal of Safety Science and Technology, 2015, 11(9): 88-93.
[8]CHEN Z. On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: methane/air at normal temperature and pressure[J]. Combustion and Flame, 2015, 162(6): 2442-2453.
[9]TANG C, ZHANG S, SI Z, et al. High methane natural gas/air explosion characteristics in confined vessel[J]. Journal of hazardous materials, 2014, 278: 520-528.
[10]FAGHIH M, GOU X, CHEN Z.The explosion characteristics of methane, hydrogen and their mixtures: a computational study[J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 131-138.
[11]杜扬, 王世茂, 袁广强, 等. 含弱约束端面短管道油气爆炸特性实验研究[J]. 爆炸与冲击, 2018, 38(2): 465-472. DU Yang, WANG Shimao, YUAN Guangqiang,et al. Experimental study of fuel-air mixture explosion characteristics in the short pipe containing weakly confined face at the end[J]. Explosion and Shock Waves, 2018, 38(2): 465-472.
[12]吴松林, 杜扬, 张培理, 等. 点火方式对受限空间油气爆燃规律的影响[J]. 化工学报, 2016, 67(4): 1626-1632. WU Songlin, DU Yang, ZHANG Peili, et al. Effect of ignition node on gasoline-air deflagration behavior in confined space[J]. Journal of Chemical Industry and Engineering, 2016, 67(4): 1626-1632.
[13]QI S, DU Y, ZHANG P,et al. Experimental study of gasoline vapor deflagration in a duct with an open end[J]. Combustion and Flame, 2018, 193: 16-24.
[14]BAUWENS C R, DOROFEEV S B. Effect of initial turbulence on vented explosion overpressures from lean hydrogen-air deflagrations[J]. International Journal of Hydrogen Energy, 2014, 39(35):20509-20515.
[15]VANDEBROEK L, VAN D S F, VERPLAETSEN F, et al. Flammability limits and explosion characteristics of toluene-nitrous oxide mixtures[J]. Journal of Hazardous Materials, 2005, 120(1):57-65.
[16]RAZUS D, MOVILEANU C , BRINZEAV , et al. Explosion pressures of hydrocarbon-air mixtures in closed vessels[J]. Journal of Hazardous Materials, 2006, 135(1-3):58-65.
[17]韦世豪, 杜扬, 王世茂,等. 不同形状受限空间内油气爆燃特性的实验研究[J]. 中国安全生产科学技术, 2017, 13(5):41-47. WEI Shihao, DU Yang, WANG Shimao, et al. Experimental study on deflagration characteristics of gasoline-air mixture in confined space with different shapes[J]. Journal of Safety Science and Technology, 2017, 13(5):41-47.

相似文献/References:

[1]任常兴,李〓晋,张〓欣,等.超细冷气溶胶抑制油气预混爆炸实验研究[J].中国安全生产科学技术,2012,8(10):28.
 REN Chang xing,LI Jin,ZHANG Xin,et al.Experimental research on suppressing premixed oil gas explosion by ultrafine cold aerosol[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(6):28.
[2]李阳超,杜扬,王世茂,等.端部开口受限空间汽油蒸气爆燃超压特性研究[J].中国安全生产科学技术,2016,12(7):32.[doi:10.11731/j.issn.1673-193x.2016.07.006]
[3]韦世豪,杜扬,王世茂,等.不同形状受限空间内油气爆燃特性的实验研究[J].中国安全生产科学技术,2017,13(5):41.[doi:10.11731/j.issn.1673-193x.2017.05.007]
 WEI Shihao,DU Yang,WANG Shimao,et al.Experimental study on deflagration characteristics of gasoline-air mixture in confined space with different shapes[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(6):41.[doi:10.11731/j.issn.1673-193x.2017.05.007]
[4]韦世豪,杜扬,王世茂,等.储油条件下拱顶油罐的油气爆炸实验[J].中国安全生产科学技术,2017,13(9):152.[doi:10.11731/j.issn.1673-193x.2017.09.024]
 WEI Shihao,DU Yang,WANG Shimao,et al.Experiments on gasoline-air mixture explosion in dome roof oil tank with oil storage[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(6):152.[doi:10.11731/j.issn.1673-193x.2017.09.024]
[5]欧益宏,李润,袁广强,等.半密闭空间油气爆炸初期火焰特性研究[J].中国安全生产科学技术,2018,14(2):157.[doi:10.11731/j.issn.1673-193x.2018.02.025]
 OU Yihong,LI Run,YUAN Guangqiang,et al.Study on initial flame characteristics of gasoline-air mixtures explosion in semi-confined space[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(6):157.[doi:10.11731/j.issn.1673-193x.2018.02.025]
[6]刘冲,杜扬,张培理,等.多分支管道油气爆炸特性大涡模拟[J].中国安全生产科学技术,2019,15(1):134.[doi:10.11731/j.issn.1673-193x.2019.01.021]
 LIU Chong,DU Yang,ZHANG Peili,et al.Large eddy simulation on explosion characteristics of gasolineair mixture in multibranch pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(6):134.[doi:10.11731/j.issn.1673-193x.2019.01.021]

备注/Memo

备注/Memo:
收稿日期: 2019-05-07
* 基金项目: 国家自然科学基金项目(51704301)
作者简介: 蔡运雄,硕士研究生,主要研究方向为油气安全与防护技术。
更新日期/Last Update: 2019-07-09