|本期目录/Table of Contents|

[1]吴奇峰,汪磊,周骏,等.加载条件下原水管道受力特征模型试验研究[J].中国安全生产科学技术,2019,15(4):174-179.[doi:10.11731/j.issn.1673-193x.2019.04.027]
 WU Qifeng,WANG Lei,ZHOU Jun,et al.Experimental study on stress characteristics model of raw water pipeline under loading conditions[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(4):174-179.[doi:10.11731/j.issn.1673-193x.2019.04.027]
点击复制

加载条件下原水管道受力特征模型试验研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
15
期数:
2019年4期
页码:
174-179
栏目:
职业安全卫生管理与技术
出版日期:
2019-04-30

文章信息/Info

Title:
Experimental study on stress characteristics model of raw water pipeline under loading conditions
文章编号:
1673-193X(2019)-03-0174-06
作者:
吴奇峰1汪磊1周骏2施亮2
(1. 上海工程技术大学 城市轨道交通学院,上海 201620;2. 上海城投原水有限公司,上海 200127)
Author(s):
WU Qifeng1 WANG Lei1 ZHOU Jun2 SHI Liang2
(1. School of Urban Railway Transportation, Shanghai University of Engineering Science, Shanghai 201620, China;2. Shanghai SMI Raw Water CO., LTD., Shanghai 200127, China)
关键词:
模型试验原水管线加载作用受力特征弯曲变形
Keywords:
modeling test raw water pipeline loading stress characteristics bending deformation
分类号:
X947
DOI:
10.11731/j.issn.1673-193x.2019.04.027
文献标志码:
A
摘要:
为研究堆载大小对原水管道受力变形的影响,采用量纲分析法得出模型试验相似比,并根据相似比进行模型箱的设计、管道材料的选取和重塑土的配制,研究不同工况下管道的受力特征。试验结果表明:整体上管道端部应力大于管中央应力,管轴向应力大于管环向应力。在中心加载下,管端应力值较管中央处大,前者增长速度更快,而后者增长速度较慢。在偏心荷载作用下,靠近荷载的管端应力最大,而管中央应力最小;尤其在偏载6 kPa作用下,管端下表面轴向应力达到595 kPa,而管中央处仅有64 kPa,管端受边界约束作用明显,管道呈弯曲变形。
Abstract:
The model test is used to study the effect of the different value of the applied loading on the stress and deformation of raw water pipeline, and the dimensionality analysis method is used to obtain the similarity ratio of model test. Then the design of the model box, the selection of pipeline material and the preparation of remolded soil are carried out according to the similarity ratio, and the stress characteristics of pipeline under different working conditions are studied. The test results show that the overall stress at the end of the pipe is greater than the stress at the center of the pipe, and the axial stress of the pipe is greater than circumferential stress of the pipe. For the case of center loading, the stress value at the end of the pipe is larger than that at the center of the pipe, while the stress growth rate at the center of the pipe is slower than that at the end of the pipe. For another case of eccentric load, the stress at the end of the pipe near the load is the largest, while the stress at the center of the pipe is the smallest. It is needed to point that the eccentric load of 6 kPa is applied, the axial stress on the lower surface of the pipe reaches 595 kPa, while it is only 64 kPa at the center of the pipe. The reason is that the end of the pipe is obviously constrained by the boundary, and the pipe is bend and deformed.

参考文献/References:

[1]张土乔, 吴小刚. 垂直荷载作用下的管道纵向受力分析模式初探[J]. 中国市政工程, 2001(4):41-45. ZHANG Tuqiao, WU Xiaogang. Initial analysis of longitudinal stress in pipeline under vertical load[J]. China Municipal Engineering, 2001(4): 41-45.
[2]李镜培, 丁士君. 邻近建筑荷载对地下管线的影响分析[J].同济大学学报(自然科学版),2004, 32(12):1553-1557. LI Jingpei, DING Shijun. Influence of additional load caused by adjacent building on underground pipeline[J]. Journal of Tongji University ( Natural Science Edition), 2004, 32(12): 1553-1557.
[3]孙中菊.地面堆载作用下埋地管道的力学性状分析[D].杭州:浙江大学, 2014.
[4]龚晓南, 孙中菊, 俞建霖. 地面超载引起邻近埋地管道的位移分析[J].岩土力学, 2015,36(2):305-310. GONG Xiaonan, SUN Zhongju, YU Jianlin.Analysis of displacement of adjacent buried pipeline caused by ground surcharge[J]. Rock and Soil Mechanics, 2015,36(2): 305-310.
[5]韩传军, 张瀚, 张杰, 等. 地表载荷对硬岩区埋地管道应力应变影响分析[J]. 中国安全生产科学技术, 2015,11(7):23-29. HAN Chuanjun, ZHANG Han, ZHANG Jie, et al. Analysis on influence of surface load to stress-strain characteristics of pipeline buried in hard rock region[J]. Journal of Safety Science and Technology, 2015,11(7): 23-29.
[6]戴宏伟, 陈仁鹏, 陈云敏. 地面新施工荷载对临近地铁隧道纵向变形的影响分析研究[J]. 岩土工程学报, 2006,28(3): 312-316. DAI Hongwei, CHEN Renpeng, CHEN Yunmin. Study on effect of construction loads on longitudinal deformation of adjacent metro tunnels[J].Chinese Journal of Geotechnical Engineering, 2006, 28(3):312-316.
[7]王永强, 牛星钢, 谭钦文. 重型车辆荷载下埋地天然气管道的安全分析[J]. 中国安全生产科学技术, 2011, 7(8):109-114. WANG Yongqiang, NIU Xingang,TAN Qinwen. Safety analysis for buried gas pipelines under heavy vehicle loads[J]. Journal of Safety Science and Technology,2011, 7(8): 109-114.
[8]张陈蓉, 卢恺, 黄茂松. 工程堆载对市政管线纵向响应的影响分析[J]. 岩石力学与工程学报, 2015,34(S1):3055-3061. ZHANG Chenrong,LU Kai,HUANG Maosong.Study on the longitudinal response of municipal pipelines induced by construction load[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(S1): 3055-3061.
[9]杨俊涛. 垂直荷载作用下埋地管道的纵向力学性状分析[D].杭州:浙江大学, 2006.
[10]李长俊, 马树锋, 季楚凌, 等. 地面堆载对埋地管道的安全影响分析[J]. 中国安全生产科学技术, 2015, 11(11):23-28. LI Changjun,MA Shufen,JI Chuling,et al. Study on influence to safety of buried pipelines caused by ground loads[J]. Journal of Safety Science and Technology, 2015, 11(11): 23-28.
[11]朱叶艇, 张桓, 张子新,等. 盾构隧道推进对邻近地下管线影响的物理模型试验研究[J]. 岩土力学, 2016,37(S2):151-160. ZHU Yeting, ZHANG Huan, ZHANG Zixin, et al. Physical model test study of influence of advance of shield tunnel on Adjacent underground pipelines[J]. Rock and Soil Mechanics,2016,37(S2): 151-160.
[12]彭寿海. 超大口径预应力钢筒混凝土管(PCCP)结构分析[D]. 北京: 清华大学, 2009.
[13]李强, 曾德顺. 盾构施工中垂直交叉隧道变形的三维有限元分析[J]. 岩土力学, 2001, 22(3):334-338. LI Qiang,ZENG Deshun. 3D FEM deformation analysis with the new tunnel perpendicularly crossing under the old one[J]. Rock and Soil Mechanics, 2001,22(3): 334-338.
[14]房明, 刘镇, 周翠英, 等. 新建隧道盾构下穿施工对既有隧道影响的三维数值模拟[J].铁道科学与工程学报,2011,8(1): 67-72. FANG Ming, LIU Zhen, ZHOU Cuiying, et al. 3D numerical simulation of influence of undercrossing shield construction on existing tunnel[J]. Journal of Railway Science and Engineering, 2011, 8(1): 67-72.
[15]施琦. 大面积深基坑施工扰动位移特点及其合理开挖方式研究[D]. 上海: 上海交通大学, 2015.

相似文献/References:

[1]张登春,章照宏,袁江雅,等.公路桥梁发热电缆除冰系统试验研究[J].中国安全生产科学技术,2015,11(11):90.[doi:10.11731/j.issn.1673-193x.2015.11.015]
 ZHANG Deng-chun,ZHANG Zhao-hong,YUAN Jiang-ya,et al.Experimental research on deicing system by heating cables for highway bridges[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(4):90.[doi:10.11731/j.issn.1673-193x.2015.11.015]
[2]敬小非,周筱,赵一姝,等.筋带密度对尾矿坝漫顶破坏规律影响研究[J].中国安全生产科学技术,2016,12(8):68.[doi:10.11731/j.issn.1673-193x.2016.08.011]
 JING Xiaofei,ZHOU Xiao,ZHAO Yishu,et al.Study on influence of reinforcement density on overtopping failure of tailings dam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(4):68.[doi:10.11731/j.issn.1673-193x.2016.08.011]
[3]徐薇,刘波,周予启.超大直径扩底嵌岩桩模型试验研究[J].中国安全生产科学技术,2017,13(7):117.[doi:10.11731/j.issn.1673-193x.2017.07.019]
 XU Wei,LIU Bo,ZHOU Yuqi.Study on model test of super large diameter rock socketed pile with belled shaft[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(4):117.[doi:10.11731/j.issn.1673-193x.2017.07.019]
[4]张登春,章照宏,袁江雅,等.热力管加热桥面抗冰融冰试验研究[J].中国安全生产科学技术,2017,13(12):179.[doi:10.11731/j.issn.1673-193x.2017.12.028]
 ZHANG Dengchun,ZHANG Zhaohong,YUAN Jiangya,et al.Experimental research on anti icing and ice melting of bridge deck by heat pipe heating[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(4):179.[doi:10.11731/j.issn.1673-193x.2017.12.028]
[5]许志发,王光进,赵怀刚,等.不同下游河道坡降尾矿库溃坝模型试验及下游影响研究[J].中国安全生产科学技术,2018,14(8):134.[doi:10.11731/j.issn.1673-193x.2018.08.022]
 XU Zhifa,WANG Guangjin,ZHAO Huaigang,et al.Study on dambreak model tests and downstream influence of tailings pond with different downstream river slopes[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(4):134.[doi:10.11731/j.issn.1673-193x.2018.08.022]
[6]陈雪峰,赵孝学,汪海波,等.节理充填岩体爆炸应力波传播规律模型试验与应用研究[J].中国安全生产科学技术,2018,14(12):130.[doi:10.11731/j.issn.1673-193x.2018.12.021]
 CHEN Xuefeng,ZHAO Xiaoxue,WANG Haibo,et al.Model tests and application research on propagation laws of blasting stress wave in jointed and filled rock mass[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(4):130.[doi:10.11731/j.issn.1673-193x.2018.12.021]

备注/Memo

备注/Memo:
收稿日期: 2019-01-26
基金项目: 国家自然科学基金项目(41630633,41807232,U1834201);中国博士后基金项目(2018M640389)
作者简介: 吴奇峰,硕士研究生,主要研究方向为土力学。
通信作者: 汪磊,博士,副教授,主要研究方向为土力学。
更新日期/Last Update: 2019-05-09