|本期目录/Table of Contents|

[1]陈家骐,华建兵,段园煜,等.基于粒子群优化的DGM(1,1)模型在基坑变形安全预测中的研究[J].中国安全生产科学技术,2019,15(3):161-166.[doi:10.11731/j.issn.1673-193x.2019.03.026]
 CHEN Jiaqi,HUA Jianbing,DUAN Yuanyu,et al.Study on DGM(1,1) model based on particle swarm optimization in predicting deformation safety of foundation pit[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(3):161-166.[doi:10.11731/j.issn.1673-193x.2019.03.026]
点击复制

基于粒子群优化的DGM(1,1)模型在基坑变形安全预测中的研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
15
期数:
2019年3期
页码:
161-166
栏目:
职业安全卫生管理与技术
出版日期:
2019-03-31

文章信息/Info

Title:
Study on DGM(1,1) model based on particle swarm optimization in predicting deformation safety of foundation pit
文章编号:
1673-193X(2019)-03-0161-06
作者:
陈家骐华建兵段园煜司大雄丁蕾丁碧莹
(合肥学院 建筑工程系,安徽 合肥 230601)
Author(s):
CHEN JiaqiHUA JianbingDUAN YuanyuSI DaxiongDING LeiDING Bilei
(Department of Civil Engineering,Hefei University,Hefei Anhui 230601,China)
关键词:
预测粒子群变权DGM(11)基坑变形
Keywords:
prediction particle swarm variable weight DGM(11) foundation pit
分类号:
X947
DOI:
10.11731/j.issn.1673-193x.2019.03.026
文献标志码:
A
摘要:
为确保基坑施工期间发生变形后能够正常使用,将变权缓冲算子结合DGM(1,1)模型构造出变权离散灰色模型,利用相对误差、后验差比,灰色绝对关联度3种精度检验法作为粒子群算法适应度建立模型,构造PSO-VWDGM(1,1)模型,并结合实际工程监测数据研究不同适应度对基坑变形预测精度的影响。研究结果表明:不同适应度函数对预测精度存在较大影响,以灰色绝对关联度作为适应度建立模型预测精度较高,可以更好应用在工程中。研究成果可为工程施工阶段的基坑变形预测、稳定性分析与灾害评估、预警提供参考。
Abstract:
In order to ensure the deformation safety and normal operation of foundation pit during the construction process, the variable weight discrete grey model was constructed by using variable weight buffer operator combined with DGM (1, 1) model, then the model was established by taking three accuracy test methods including the relative error, posteriori error ratio and grey absolute correlation degree as the particle swarm algorithm fitness to construct the PSO-VWDGM(1,1) model, and the influence of different fitness on the prediction accuracy of foundation pit deformation was studied by combining with the practical engineering monitoring data. The results showed that different fitness functions had a great influence on the prediction accuracy, and the model established with the grey absolute correlation degree as the fitness had higher prediction accuracy, which can be better applied in the engineering. The results can provide reference for the safety, stability analysis, disaster assessment and early warning of foundation pit deformation in the construction stage of risk engineering.

参考文献/References:

[1]李彦杰, 薛亚东, 岳磊, 等. 基于遗传算法-BP神经网络的深基坑变形预测[J]. 地下空间与工程学报, 2015, 11(S2): 741-749. LI Yanjie, XUE Yadong, YUE Lei, et al. Displacement prediction of deep foundation pit based on genetic algorithms and bp neural network [J]. Chinese Journal of Underground Space and Engineering, 2015, 11(S2): 741-749.
[2]杨彪, 李慧民, 孟海, 等. 基于GM-ANN模型的建筑物沉降量变化趋势预测方法[J]. 中国安全生产科学技术, 2016, 12(10):149-153. YANG Biao, LI Huimin, MENG Hai, et al. Prediction method of building settlement change trend based on gm-ann model [J]. Journal of Safety Science and Technology, 2016, 12(10):149-153.
[3]冯宝俊,刘敦文,褚夫蛟. 基于PSO-SVM模型的隧道水砂突涌量预测研究[J]. 中国安全生产科学技术, 2014, 10(7):123-129. FENG Baojun, LIU Dunwen, ZHU Fujiao. A study on prediction of water sand burst volume in tunnels based on pso-svm model [J]. Journal of Safety Science and Technology, 2014, 10(7):123-129.
[4]郭健, 查吕应, 庞有超, 等. 基于小波分析的深基坑地表沉降预测研究[J]. 岩土工程学报, 2014, 36(S2): 343-347. GUO Jian, ZHA LYuying, PANG Youchao, et al. Prediction for ground settlement of deep excavations based on wavelet analysis[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 343-347.
[5]朱海琴, 习明星, 崔猛, 等. 基于 BP 神经网络和遗传算法的软基参数反演与沉降预测[J]. 南昌工程学院学报, 2017, 36(3): 84-90. ZHU Haiqin, XI Mingxing, CUI Meng, et al. Back analysis of parameters and settlement prediction of soft foundation based on BP neural network and genetic algorithm[J]. Journal of Nanchang Institute of Technology, 2017,36(3): 84-90.
[6]周星勇, 杨容浩, 王志胜, 等. 一种改进遗传神经网络的建筑基坑沉降预测模型[J]. 测绘工程, 2018, 27(3): 53-57. ZHOU Xingyong, YANG Ronghao, WANG Zhisheng, et al. An improved GA-BP network settlement prediction model of building foundation pit[J]. Engineering of Surveying and Mapping, 2018, 27(3): 53-57.
[7]何剑宇. 基于粒子群优化算法的灰色预测模型 GM (1,1) 改进[J]. 沈阳农业大学学报, 2012, 43(2): 253-256. HE Jianyu. The improvement on gray prediction model GM(1,1) based on particle swarm optimization algorithm[J]. Journal of Shenyang Agricultural University, 2012, 43(2): 253-256.
[8]冯非凡, 武雪玲, 牛瑞卿, 等. 粒子群优化 BP 神经网络的滑坡敏感性评价[J]. 测绘科学, 2017, 42(10): 170-175. FENG Feifan, WU Xueling, NIU Ruiqing, et al. Landslide susceptibility assessment based on PSO-BP neural network[J]. Science of Surveying and Mapping, 2017, 42(10): 170-175.
[9]马符讯, 徐南, 马成. 自适应变异粒子群优化灰色模型在变形分析中的应用[J]. 测绘工程, 2014, 23(5): 55-57. MA Fuxun, XU Nan, MA Cheng.The grey model based on adaptive mutation practical swarm optimization algorithm and its application in deformation monitoring[J]. Engineering of Surveying and Mapping, 2014, 23(5): 55-57.
[10]周飞, 吕一清, 石林娜. 改进粒子群算法优化灰色神经网络预测模型及其应用[J]. 统计与决策, 2017 (11): 66-70. ZHOU Fei, LYU Yiqing, SHI Lingna. Gray neural network forecasting model and its application based on improved particle swarm algorithm optimization[J]. Statistics and Decision, 2017, (11): 66-70.
[11]邓聚龙.灰色预测与决策[M].武汉:华中科技大学出版社,2002.
[12]谢乃明, 刘思峰. 离散 GM (1, 1) 模型与灰色预测模型建模机理[J]. 系统工程理论与实践, 2005, 25(1): 93-99. XIE Naiming, LIU Sifeng. Discrete gm (1,1) and mechanism of grey forecasting model[J]. System Engineering Theory and Practice | System Eng Theor Prac, 2005, 25(1): 93-99.
[13]刘思峰, 党耀国, 方志耕, 等.灰色系统理论及其应用[M].5版.北京:科学出版社,2010:176-179.
[14]王正新,党耀国,刘思峰.变权缓冲算子及其作用强度的研究[J].控制与决策,2009,24(8):1218-1222. WANG Zhengxin, DANG Yaoguo , LIU Sifeng.Study on buffer operators with variable weights and their effect strength to original sequence[J]. Control and Decision, 2009,24(8):1218-1222.
[15]杨维, 李歧强. 粒子群优化算法综述[J]. 中国工程科学, 2004, 6(5): 87-94. YANG Wei, LI Qiqiang. Study of the variable load while estimating existing bridge structure[J]. Engineering Science, 2004, 6(5): 87-94.

相似文献/References:

[1]罗景峰,许开立.基于可变模糊组合方法的瓦斯涌出量预测[J].中国安全生产科学技术,2011,7(6):29.
 LUO Jing-feng,XU Kai-li.Gas Emission Rate Forecast Based on variable fuzzy Combination method [J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(3):29.
[2]朱庆明,张浩.三次指数平滑法在煤矿事故预测中的应用研究[J].中国安全生产科学技术,2012,8(4):103.
 ZHU Qing ming,ZHANG Hao.Study on the application of cubic exponential smoothing method in coal mine accidents forecasting[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(3):103.
[3]李钢.基于灰色系统理论的尾矿库坝体 形变位移预测方法[J].中国安全生产科学技术,2012,8(4):107.
 LI Gang.Research on the displacement forecasting methods of tailings dam deformation based on the gray system theory[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(3):107.
[4]刘程程,杨力.PCA-SVR在煤层瓦斯含量预测中的应用[J].中国安全生产科学技术,2012,8(7):78.
 LIU Cheng cheng,YANG Li.Application of PCASVR on gas content predicting in coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(3):78.
[5]姚安林,宋祎昕.基于模糊综合评价的城市配气站场事故模式预测研究[J].中国安全生产科学技术,2012,8(11):118.
 YAO An-lin,SONG Yi-xin.Study on accident models prediction of urban gas distribution station based on fuzzy comprehensive evaluation[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(3):118.
[6]王旭.基于Gompertz曲线的石油库罐区火灾灭火剂供应量预测[J].中国安全生产科学技术,2013,9(5):21.[doi:10.11731/j.issn.1673-193x.2013.05.004]
 WANG Xu.Prediction on the supply quantity of fire extinguishing agent for petroleum storage tank based on the the Gompertz curve[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(3):21.[doi:10.11731/j.issn.1673-193x.2013.05.004]
[7]陈功胜.潘一矿西翼通风系统调整与预测研究[J].中国安全生产科学技术,2013,9(7):91.[doi:10.11731/j.issn.1673-193x.2013.07.015]
 CHENG Gong sheng.Research on adjustment and prediction of ventilation system for west wing of Panyi mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(3):91.[doi:10.11731/j.issn.1673-193x.2013.07.015]
[8]尹小贝,白福利,岳仁田.基于GM(1,N)灰模型预测企业主动性安全投入[J].中国安全生产科学技术,2009,5(2):141.
 YIN Xiao bei,BAI Fu li,YUE Ren tian.Forecast of enterprises initiative investment on safety based on GM(1,N) grey model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(3):141.
[9]陈祖云,张桂珍,邬长福,等.基于支持向量机的边坡稳定性预测研究 *[J].中国安全生产科学技术,2009,5(4):101.
 CHEN Zu yun,ZHANG Gui zhen,WU Chang fu,et al.Study of prediction of slope stability based on support vector machines[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(3):101.
[10]胡双启,李 勇.基于灰色Elman神经网络的煤矿事故预测[J].中国安全生产科学技术,2009,5(4):106.
 HU Shuang qi,LI Yong.Prediction of coal mine accidents based on gray elman neural networks[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(3):106.

备注/Memo

备注/Memo:

收稿日期: 2018-11-21
基金项目: 安徽省重点研究与开发计划面上攻关项目(711301499089),合肥学院科学研究发展基金重点项目(18ZR01ZDB)
作者简介: 陈家骐,硕士,主要研究方向为基坑支护安全监测。
更新日期/Last Update: 2019-04-15