|本期目录/Table of Contents|

[1]李云涛,陈旭芳,帅健.基于FERC模型的油品流淌火灾定量风险评估方法研究[J].中国安全生产科学技术,2019,15(3):104-108.[doi:10.11731/j.issn.1673-193x.2019.03.017]
 LI Yuntao,CHEN Xufang,SHUAI Jiang.Study on quantitative risk assessment method for spill fire of oil based on FERC model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(3):104-108.[doi:10.11731/j.issn.1673-193x.2019.03.017]
点击复制

基于FERC模型的油品流淌火灾定量风险评估方法研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
15
期数:
2019年3期
页码:
104-108
栏目:
职业安全卫生管理与技术
出版日期:
2019-03-31

文章信息/Info

Title:
Study on quantitative risk assessment method for spill fire of oil based on FERC model
文章编号:
1673-193X(2019)-03-0104-05
作者:
李云涛陈旭芳帅健
(中国石油大学(北京) 安全与海洋工程学院,北京 102249)
Author(s):
LI YuntaoCHEN XufangSHUAI Jiang
(College of Safety and Ocean Engineering,China University of Petroleum(Beijing),Beijing 102249,China)
关键词:
流淌火FERC模型定量风险评估个人风险
Keywords:
spill fire FERC model quantitative risk assessment individual risk
分类号:
X932;X937
DOI:
10.11731/j.issn.1673-193x.2019.03.017
文献标志码:
A
摘要:
为了评价油品储运过程中的流淌火灾风险,提出1种基于FERC模型的油品流淌火灾定量风险评估方法。以某汽油管道为例,分析大孔泄漏、中孔泄漏、小孔泄漏3种模式下流淌火各参数的动态变化过程,计算管道周边不同位置处的个人风险值。研究结果表明:流淌火燃烧面积的最大值随泄漏速率的增加而增大,对于给定的算例条件,大孔泄漏情景下的最大燃烧半径较小孔泄漏增大了18.4倍;相较小孔泄漏,大孔泄漏下安全距离增大了6.7倍;在距离泄漏点100 m的位置,小孔泄漏、中孔泄漏和大孔泄漏条件下的辐射热流密度值分别为0.13,1.34,8.02 kW/m2;距离泄漏点34 m处时,大孔泄漏已经占总个人风险的99%;在开展风险评价时,应着重分析大孔泄漏的情景。
Abstract:
In order to evaluate the risk of spill fire during the storage and transportation processes of oil, a quantitative risk assessment method for the spill fire of oil based on FERC model was proposed. Taking certain gasoline pipeline as an example, the dynamic change processes of each factor of spill fire under three modes including large hole leakage, medium hole leakage and small hole leakage were analyzed, and the values of individual risk at different positions around the pipeline were calculated. The results showed that the maximum burning area of spill fire increased with the increase of leakage rate, and the maximum burning radius under the scenario of large hole leakage increased by 18.4 times than that of small hole leakage. The flame height under the small hole leakage was steady at 8.16 m, while the flame height under the large and medium hole leakage was steady at 15.4 m. Compared with the small hole leakage, the safety distance under the large hole leakage increased by 6.7 times. The radiation heat flux under the small hole leakage, medium hole leakage and large hole leakage was 0.13, 1.34 and 8.02 kW/m2 respectively at the position with 100 m distance away from the leakage point. The large hole leakage occupied 99% of total individual risk at the position with 34 m distance away from the leakage point. Therefore, the scenario of large hole leakage should be analyzed with emphasis when carrying out the risk assessment.

参考文献/References:

[1]国家安全监管总局, 公安部. 关于大连中石油国际储运有限公司“7·16”输油管道爆炸火灾事故情况的通报[Z]. 2010.
[2]泰州市政府“4·22”较大火灾事故调查组. 江苏德桥仓储有限公司“4·22”较大火灾事故调查报告[R]. 2016.
[3]全国安全生产标准化技术委员会化学品安全分技术委员会. 化工企业定量风险评价导则:AQ/T 3046—2013 [S].北京:煤炭工业出版社,2013.
[4]FAY J A. Model of spills and fires from LNG and oil tankers [J]. Journal of Hazardous Materials, 2003, 96(2): 171-188.
[5]LEHR W, SIMECEK-BEATTY D. Comparison of hypothetical LNG and fuel oil fires on water [J]. Journal of hazardous materials, 2004, 107(1): 3-9.
[6]ABS Consulting, Inc. Consequence assessment methods for incidents involving releases from liquefied natural gas carriers [R]. 2004.
[7]HIGHTOWER M, GRITZO L, LUKETA-HANLIN A, et al. Guidance on risk analysis and safety implications of a large liquefied natural gas (LNG) spill over water [R]. 2004.
[8]LI Y, HUANG H, WANG Z, et al. An experimental and modeling study of continuous liquid fuel spill fires on water [J]. Journal of Loss Prevention in the Process Industries, 2015, 33: 250-257.
[9]陈旭芳,李云涛,帅健. 水面LNG 液池扩展模型的分析与对比研究[J]. 中国安全生产科学技术, 2018, 14(3): 115-120. CHEN Xufang, LI Yuntao, SHUAI Jian. Analysis and comparative study on liquid pool spread model for LNG on water surface [J]. Journal of Safety Science and Technology, 2018, 14(3): 115-120.
[10]VAN DEN BOSH C, WETERINGS R. Methods for the calculation of physical effects (Yellow Book)[Z]. Committee for the Prevention of Disasters, The Hague (NL), 1997.
[11]DRYSDALE D. An introduction to fire dynamics[M]. 3rd edition Chichester: John Wiley & Sons, 2011: 193-194.
[12]BEYLER C L, Fire Hazard Calculations for Large, Open Hydrocarbon Fires, chapter. In: SFPE Handbook of Fire Protection Engineering [M]. New York:Springer ,2016.
[13]MCGRATTAN K B, HAMINS A, Thermal Radiation from Large Pool Fires (NISTIR 6546) [R]. NIST, 2000.
[14]高进东. 化工储罐区池火灾多米诺效应风险评估[J]. 中国安全生产科学技术, 2013, 9(7): 54-59. GAO Jindong.Risk assessment on domino effect caused by pool fire in chemical tanks [J]. Journal of Safety Science and Technology, 2013, 9(7): 54-59.
[15]中国石油化工股份有限公司青岛安全工程研究院. 石化装置定量风险评估指南[M]. 北京:中国石化出版社, 2007.
[16]单克, 帅健, 张思弘. 基于修正因子的油气管道失效概率评估[J]. 中国安全科学学报, 2016, 26(1): 87-93. SHAN Ke, SHUAI Jian, ZHANG Sihong. Adjustment factors based assessment of oil and gas pipelines failure probability [J].China Safety Science Journal, 2016, 26(1): 87-93.
[17]国家安全生产监督管理总局. 危险化学品重大危险源监督管理暂行规定[Z]. 2015.

相似文献/References:

[1]陈旭芳,李云涛,帅健.水面LNG液池扩展模型的分析与对比研究[J].中国安全生产科学技术,2018,14(3):115.[doi:10.11731/j.issn.1673-193x.2018.03.017]
 CHEN Xufang,LI Yuntao,SHUAI Jian.Analysis and comparative study on liquid pool spread model for LNG on water surface[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(3):115.[doi:10.11731/j.issn.1673-193x.2018.03.017]

备注/Memo

备注/Memo:

收稿日期: 2018-12-28;数字出版日期: 2019-03-25
基金项目: 国家重点研发计划项目(2018YFC0809300);国家自然科学基金项目(51806247)
作者简介: 李云涛,博士,讲师,主要研究方向为油气火灾风险评估。
更新日期/Last Update: 2019-04-15