|本期目录/Table of Contents|

[1]任常兴,张琰,赵文胜,等.混合气体爆炸性现场测试实验研究[J].中国安全生产科学技术,2019,15(1):20-25.[doi:10.11731/j.issn.1673-193x.2019.01.003]
 REN Changxing,ZHANG Yan,ZHAO Wensheng,et al.Experimental study on field test for explosiveness of gas mixture[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(1):20-25.[doi:10.11731/j.issn.1673-193x.2019.01.003]
点击复制

混合气体爆炸性现场测试实验研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
15
期数:
2019年1期
页码:
20-25
栏目:
学术论著
出版日期:
2019-01-31

文章信息/Info

Title:
Experimental study on field test for explosiveness of gas mixture
文章编号:
1673-193X(2019)-01-0020-06
作者:
任常兴13张琰1赵文胜2李晋13
(1.应急管理部天津消防研究所,天津 300381;2.天津理工大学 环境科学与安全工程学院,天津 300384;3.国家消防工程技术研究中心,天津 300381)
Author(s):
REN Changxing13 ZHANG Yan1 ZHAO Wensheng2 LI Jin13
(1. Tianjin Fire Research Institute of MEM, Tianjin 300381, China;2. School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China;3. National Center for Fire Engineering Technology, Tianjin 300381, China)
关键词:
混合气体爆炸性现场测试爆炸极限
Keywords:
gas mixture explosiveness field test explosion limit
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2019.01.003
文献标志码:
A
摘要:
为测定现场可燃混合气体的爆炸性,对比分析了国内外实验室爆炸极限的测定装置及爆炸性判定方法,设计研制了混合气体爆炸性现场测试装置。装置实现了爆炸性环境现场的自动采样、超高温点火、高速压力和温度测定及爆炸性自行判定。开展了丙烷、乙烯和液化石油气等典型可燃气体爆炸性实验,提出了基于压力和火焰温度变化相结合的气体爆炸性判定指标,改变了传统目测判定方式。研究结果表明:20 L球和1 L爆炸腔以爆炸压力提升来判定,比管式法测定的爆炸极限范围窄,以压力提升量5%~10%判定较适宜;1 L爆炸腔以爆炸过程温度提升量来判定,爆炸极限范围比以爆炸压力提升量判定宽,与目测观察的管式测定法相比,略宽于管式测定法和大部分文献数据。
Abstract:
In order to determine the explosiveness of field flammable gas mixture, the determination devices of explosion limit in laboratory and the judgment methods of explosiveness at home and abroad were compared and analyzed, then a field test device for the explosiveness of gas mixture was designed and developed, which realized the autosampling, ignition of ultra high temperature, high speed determination of pressure and temperature, and automatic judgment of explosiveness in the explosiveness environment field. The experiments on the explosiveness of typical flammable gases such as propane, ethylene and LPG were carried out, and the judgment index of gas explosiveness based on the combination of pressure and flame temperature change was put forward, which changed the traditional judgment method of visual inspection. The results showed that when judging with the increase of explosion pressure for the 20 L sphere and 1 L explosion cavity, the determined ranges of explosion limit were relatively narrower than that of tube method, and the judgment with the increase amount of pressure as 5%-10% was more suitable. When judging with the increase amount of temperature during the explosion process for the 1 L explosion cavity, the range of explosion limit was wider that that when judging with the increase amount of explosion pressure, and compared with the tube method by the visual inspection, it was slightly wider than those of tube method and most literature reference data.

参考文献/References:

[1]任常兴, 张欣, 慕洋洋,等. 可燃气体和混合气极限氧浓度实验研究[J]. 消防科学与技术, 2017, 36(2):156-159. REN Changxing, ZHANG Xin, MU Yangyang, et al. Experimental research on the limiting oxygen concentration of gases and gas mixtures [J]. Fire Science and Technology, 2017, 36(2):156-159.
[2]任常兴, 张欣, 张琰, 等. 可燃气体及混合物爆炸极限影响特征研究[J]. 消防科学与技术,2017,36(11):1500-1503. REN Changxing, ZHANG Xin, ZHANG Yan, et al. Overview on the characteristics of explosion limits of gas and gas mixtures [J]. Fire Science and Technology, 2017, 36 (11):1500-1503.
[3]AKIFUMI TAKAHASHI, YOUKICHI URANO, KAZUAKITOKUHASHI,SHIGEO KONDO. Effect of vessel size and shape on experimental flammability limits of gases[J]. Journal of Hazardous Materials, 2003, 105(1-3):27.
[4]IA ZLOCHOWER,GM GREEN. The limiting oxygen concentration and flammability limits of gases and gas mixtures[J].Journal of Loss Prevention in the Process Industries,2009, 22(4):499-505.
[5]The European Standards. Determination of explosion limits of gases and vapours :EN 1839:2003[S].1839.
[6]The European Standards.Determination of the limiting oxygen concentration (LOC) for gases and vapours :EN 14756:2007[S].2007.
[7]Deutsches Institut für Normung e.V.. Determination of explosion limits of gases and gas/air mixtures: DIN 51649-1:1986[S].1986.
[8]American Society for Testing andMaterials.Standard Test Method for Concentration Limits of Flammability of Chemicals (Vapors and Gases): ASTM E 681:2009(2015)[S].2009.
[9]American Society for Testing and Materials. Standard Test Methods for Limiting Oxygen (Oxidant) Concentration in Gases and Vapors: ASTM E2079:2007(2013)[S].2007.
[10]夏阳光, 陶刚, 张礼敬. 基于绝热火焰温度多元混合气体可燃性极限的理论预测[J].中国安全生产科学技术,2016,12(9):30-35. XIA Yangguang, TAO Gang, ZHANG Lijing. Theoretical prediction on flammable limit of multi-component gas mixture based on adiabatic flame temperature[J]. Journal of Safety Science and Technology, 2016,12(9):30-35.
[11]金满平,张帆,孙峰,等.温度对烃类物质爆炸极限的影响及其预测模型研究[J].中国安全生产科学技术,2013,9(9):5-10. JIN Manping, ZHANG Fan, SUN Feng, et al. Influence of temperature on explosion limits of hydro carbons and its prediction model[J]. Journal of Safety Science and Technology,2013,9(9):5-10.
[12]VEREINDEUTSCHER INGENIEURE. Dust Fires And Dust Explosions; Hazards, Assessment, Protective Measures; Test Methods For The Determination Of The Safety Characteristic Of Dusts: VDI 2263-1:1990[S].1990.
[13]李唐山. 混合气体爆炸性MFC图形分析[J].中国安全科学学报,2004,14(5):88-91. LI Tangshan. MFC graphic analysis of mixed gases explosiveness [J]. Journal of China Safety Science, 2004,14(5):88-91.
[14]CASHDOLLAR K L, ZLOCHOWER I A, GREEN G M, et al. Flammability of methane, propane, and hydrogen gases[J].Journal of Loss Prevention in the Process Industry, 2000,13(3):327-340.
[15]TSCHIRSCHWITZ R, SCHRDER V, BRANDES E, et al. Determination of explosion limits-Criterion for ignition under non-atmospheric conditions[J]. Journal of Loss Prevention in the Process Industries, 2015, 36:562-568.
[16]SCHRDER V, MOLNARNE M. Flammability of gas mixtures : Part 1: Fire potential[J]. Journal of Hazardous Materials, 2005, 121(1):37-44.

相似文献/References:

[1]王〓康,张金梅,张〓晨.二溴海因危险性试验研究[J].中国安全生产科学技术,2012,8(8):84.
 WANG Kang,ZAHNG Jin mei,ZHANG Chen.Experimental study on the hazardous characteristics of 1,3dibromo5,5dimethylhydantoin[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(1):84.
[2]郭璐,张金梅,徐徽,等.汽车安全气囊用药危险性实验研究[J].中国安全生产科学技术,2012,8(11):71.
 GUO Lu,ZHANG Jin mei,XU Hui,et al.Experimental study on hazcord of automobile airbag chemical[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(1):71.
[3]夏阳光,陶刚,张礼敬.基于绝热火焰温度多元混合气体可燃性极限的理论预测[J].中国安全生产科学技术,2016,12(9):30.[doi:10.11731/j.issn.1673-193x.2016.09.005]
 XIA Yangguang,TAO Gang,ZHANG Lijing.Theoretical prediction on flammable limit of multi-component gas mixture based on adiabatic flame temperature[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(1):30.[doi:10.11731/j.issn.1673-193x.2016.09.005]

备注/Memo

备注/Memo:
收稿日期: 2018-11-01;数字出版日期:2019-01-18
基金项目: 天津市重点研发计划项目(17YFZCSF00970);公安部消防局应用创新项目(2016XFCX07)
作者简介: 任常兴,博士,副研究员,主要研究方向为危险品火灾、风险评估与消防规划、惰化与抑爆技术及应用。
更新日期/Last Update: 2019-01-31