|本期目录/Table of Contents|

[1]邓军,贾鹏飞,刘长春,等.消防脉冲水枪喷嘴结构优化研究[J].中国安全生产科学技术,2018,14(12):48-53.[doi:10.11731/j.issn.1673-193x.2018.12.007]
 DENG Jun,JIA Pengfei,LIU Changchun,et al.Research on structure optimization for nozzle of fire pulse water gun[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(12):48-53.[doi:10.11731/j.issn.1673-193x.2018.12.007]
点击复制

消防脉冲水枪喷嘴结构优化研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年12期
页码:
48-53
栏目:
学术论著
出版日期:
2018-12-31

文章信息/Info

Title:
Research on structure optimization for nozzle of fire pulse water gun
文章编号:
1673-193X(2018)-12-0048-06
作者:
邓军1贾鹏飞1刘长春1冯载荣2白磊1王刘兵1
(1.西安科技大学 安全科学与工程学院,陕西 西安 710054;2.西安新竹防灾救生设备有限公司,陕西 西安 710075)
Author(s):
DENG Jun1 JIA Pengfei1 LIU Changchun1 FENG Zairong2 BAI Lei1 WANG Liubing1
(1. College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an Shaanxi 710054, China;2. Xi’an XinZhu Fire & Rescue Equipment Co., Ltd., Xi’an Shaanxi 710075, China)
关键词:
脉冲水枪喷嘴优化集束性RNG k-ε模型VOF模型
Keywords:
pulse water gun nozzle optimization bundling RNG k-ε model VOF model
分类号:
X928.7;TH16;TV131
DOI:
10.11731/j.issn.1673-193x.2018.12.007
文献标志码:
A
摘要:
为了进一步提高脉冲水枪的灭火效率,采用CFD技术对维多辛斯基曲线结构、锥直结构和锥角结构3种喷嘴结构进行选型优化。CFD数值模型采用RNG k-ε方法模拟湍流,利用VOF模型追踪管道内部及外部流场的气液界面,研究了不同喷嘴结构对气液分布、能量转化、速度分布的影响,并结合水室中水的体积分数和出口速度曲线图对喷射周期进行分析。研究结果表明:维多辛斯基曲线结构射流周期T=14.8 ms、锥直结构T=15.4 ms、锥角结构T=17 ms;维多辛斯基曲线结构和锥直结构的出口速度衰减较缓慢,喷嘴前端的圆柱结构能提高射流速度的稳定性;维多辛斯基曲线结构喷嘴的出口速度更稳定、集束性更好、能量转化率更高,且产生的射流水柱呈锥式逐渐扩散,动能集中分布在轴线附近,能有效增大喷射距离,提高脉冲水枪的灭火效率。
Abstract:
In order to further improve the fire extinguishing efficiency of the pulse water gun, the model selection optimization on three types of nozzle structure including the Vidosinsky curve structure, cone straight structure and cone angle structure was carried out by using the CFD technology. In the CFD numerical model, the turbulence was simulated by using the RNG k-ε method, and the gasliquid interface between the internal and external flow fields of the pipeline was tracked by using the VOF model. The influence of different nozzle structures on the gasliquid distribution, energy conversion and velocity distribution was discussed, and the jet cycle was analyzed by combining with the volume fraction of water and outlet velocity curve of the water chamber. The results showed that the jet cycles of the Vitosinsky curve structure, the cone straight structure and the cone angle structure were T=14.8 ms, T=15.4 ms, and T=17 ms, respectively. The outlet velocity attenuation of the Vitosinsky curve structure and the cone straight structure were slower, and the cylindrical structure at the front end of the nozzle could improve the stability of jet velocity. The nozzle with the Vidosinsky curve structure had the more stable outlet velocity, better bundling, and higher energy conversion rate. Besides, the generated jet water column presented the gradual diffusion with a cone shape, and the kinetic energy mainly concentrated near the axis, which could effectively increase the jet distance, and improve the fire extinguishing efficiency of the pulse water gun.

参考文献/References:

[1]陕西省消防总队.灭火救援装备[Z].2013:30-31
[2]脉冲气压喷雾水枪[J].消防技术与产品信息,2017(2):88. Pulse pressure spray water gun [J]. Fire Technology and Product Information, 2017(2):88.
[3]汪吉军.喷嘴对喷射器性能的影响的数值分析[D].沈阳:东北大学,2014.
[4]HOYT J W,TAYLOR J J. Turbulence structure in a water jet discharging in air [J].Physics of Fluids,1977,20(10):253-257.
[5]HOYT J W,TAYLOR J J.Waves on water jets [J].Journal of Fluid Mechanics,1977,83(1):119-139.
[6]龚辰,杨敏官,康灿,等.喷嘴结构对射流表面波影响的实验研究[J].工程热物理学报,2018,39(3):534-538. GONG Chen,YANG Minguan,KANG Can, et al.Experimental study on the influence of nozzle structure on surface wave of jet[J].Journal of Engineering Thermophysics,2018,39(3):534-538.
[7]杨国来,周文会,刘肥.基于FLUENT的高压水射流喷嘴的流场仿真[J].兰州理工大学学报, 2008, 34(2):49-52. YANG Guolai, ZHOU Wenhui, LIU Fei. Flow field simulation of high pressure water jet nozzle based on Fluent[J].Journal of Lanzhou University of Technology, 2008, 34(2):49-52.
[8]周章根,马德毅.基于Fluent的高压喷嘴射流的数值模拟[J].机械制造与自动化,2010,39(1):61-62,130. ZHOU Zhanggen,MA Deyi. Numerical simulationof high pressure nozzle jet based on Fluent[J].Machine Building & Automation,2010,39(1):61-62,130.
[9]战仁军 ,汪 送 ,徐代锐. 基于 CFD 技术的脉冲防暴水炮高压气嘴的结构设计[J].机械设计与制造,2011(6):20-22. ZHAN Renjun, WANG Chuan, XU Dairui. Structural design of high pressure air nozzle of pulse anti-riot water cannon based on CFD technology[J].Machinery Design & Manufacture, 2011(6):20-22.
[10]MONTANARI F, MA J, KUEHLERT K. Exploratory CFD analyses of the fluid dynamics of a water cannon[C]//AIAA Aerospace Sciences Meeting and Exhibit,2005:1293.
[11]HIRT C W,NICHOLS B D. Volume of fluid(VOF)method for the dynamics of free boundaries [J]. Journal of Computational Physics, 1981, 39(1):201-225.
[12]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
[13]WELLER H.A code independent notation for finite volume algorithm[R].Nabla Ltd.,Technical Report,2002.
[14]刘长春. Level Set方法模拟界面运动[D].北京:中国科学院研究生院(工程热物理研究所),2007.
[15]何枫,谢峻石,杨京龙.喷嘴内部流道型线对射流流场的影响[J].应用力学学报,2001(4):114-119,160. HE Feng,XIE Junshi,YANG Jinglong.Influence of the internal flow path profile of the nozzle on the jet flow field[J].Chinese Journal of Applied Mechanics,2001(4):114-119,160.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2018-10-22;数字出版日期:2018-12-22
基金项目: 国家自然科学基金项目(51604215);陕西省自然科学基础研究计划项目(2018JM5078)
作者简介: 邓军,博士,教授,主要研究方向为煤火灾害防治理论与技术。
通信作者: 贾鹏飞,硕士研究生,主要研究方向为消防工程、灭火设备。
更新日期/Last Update: 2019-01-03