|本期目录/Table of Contents|

[1]杨凯,吕鹏飞,胡倩然,等.大尺度障碍物与泄爆面对天然气内爆炸的协同作用规律研究[J].中国安全生产科学技术,2018,14(12):21-27.[doi:10.11731/j.issn.1673-193x.2018.12.003]
 YANG Kai,LYU Pengfei,HU Qianran,et al.Research on synergetic effect of largescale obstacles and explosion vents on indoor explosion of natural gas[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(12):21-27.[doi:10.11731/j.issn.1673-193x.2018.12.003]
点击复制

大尺度障碍物与泄爆面对天然气内爆炸的协同作用规律研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年12期
页码:
21-27
栏目:
学术论著
出版日期:
2018-12-31

文章信息/Info

Title:
Research on synergetic effect of largescale obstacles and explosion vents on indoor explosion of natural gas
文章编号:
1673-193X(2018)-12-0021-07
作者:
杨凯12吕鹏飞12胡倩然1庞磊12
(1.北京石油化工学院 安全工程学院,北京 102617;2.北京市安全生产工程技术研究院,北京 102617)
Author(s):
YANG Kai12 LYU Pengfei12 HU Qianran1 PANG Lei12
(1. School of Safety Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China;2. Beijing Academy of Safety Engineering and Technology, Beijing 102617, China)
关键词:
气体爆炸泄爆面大尺度障碍物爆炸超压火焰速度
Keywords:
gas explosion explosion vent largescale obstacle explosion overpressure flame speed
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2018.12.003
文献标志码:
A
摘要:
为阐释民用建筑内部大尺度物品与门窗等泄爆面对天然气爆炸灾害的协同作用机制,基于典型厨房空间布局及内部物品特征,借助计算流体动力学技术研究了不同泄爆面开启压力和不同大尺度障碍物体积阻塞率条件下天然气内爆炸火焰速度、爆炸超压的分布规律。研究结果表明:大尺度障碍物与泄爆面对室内天然气爆炸过程具有显著的协同作用,共同促进火焰速度与爆炸超压的显著增长,并缩短峰值超压到达时间;大尺度障碍物的存在虽然显著降低了室内天然气的体积,但从增加房间内湍流源和相对长径比的角度进一步促进了泄爆效应;大尺度障碍物与泄爆面协同作用下,室内火焰速度呈现明显的阶段性特征,并在泄爆面附近发生波动。研究结论可为民用建筑物内气体爆炸事故调查分析和灾害评估提供科学依据。
Abstract:
In order to illustrate the synergetic effect mechanism of largescale obstacles and explosion vents like door and window on the indoor explosion of natural gas in the civil buildings, based on the spatial layout and objects characteristics in typical kitchen, the distribution laws of flame speed and explosion overpressure for the indoor explosion of natural gas under different opening pressures of explosion vents and different volume blockage ratios of largescale obstacles were studied by using the computational fluid dynamics (CFD) technology. The results showed that the largescale obstacles and explosion vents had significant synergetic effect on the indoor explosion process of natural gas, which promoted the significant increase of flame speed and explosion overpressure together, and shortened the arrival time of peak overpressure. Although the presence of largescale obstacles significantly reduced the volume of natural gas in the room, the explosion venting effect was further enhanced from the viewpoint of increasing the source of turbulence in the room and the relative aspect ratio. Under the synergetic effect of largescale obstacles and explosion vents, the indoor flame speed presented the obvious stage characteristics and fluctuated near the explosion vents. The results can provide scientific basis for the accident investigation, hazard assessment and mitigation of gas explosion in the civil buildings.

参考文献/References:

[1]BJERKETVEDT D, BAKKE J R, WINGERDEN K V. Gas explosion handbook [J].Journal of Hazardous Materials, 1997, 52(1): 1-150.
[2]BAO Q, FANG Q, ZHANG Y D, et al. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane-air mixtures [J]. Fuel, 2016, 175: 40-48.
[3]QI S, DU Y, WANG S, et al. The effect of vent size and concentration in vented gasoline-air explosions [J].Journal of Loss Prevention in the Process Industries,2016,44: 88-94.
[4]FAKANDU B M, ANDREWS G E, PHYLAKTOU H N. Gas explosion venting: Comparison of square and circular vents [J]. Chemical Engineering Transactions, 2014, 36: 163-168.
[5]GUO J, WANG C J, LIU X Y, et al. Explosion venting of rich hydrogen-air mixtures in a small cylindrical vessel with two symmetrical vents [J].International Journal of Hydrogen Energy, 2017, 42(11): 7644-7650.
[6]HJERTAGER B H, FUHRE K, BJRHAUG M. Concentration effects on flame acceleration by obstacles in large-scale methane-air and propane-air vented explosions [J].Combustion Science & Technology, 1988, 62(4-6):239-256.
[7]KARNESKY J, CHATTERJEE P, TAMANINI F, et al. An application of 3D gas dynamic modeling for the prediction of overpressures in vented enclosures [J]. Journal of Loss Prevention in the Process Industries,2007, 20 (4): 447-454.
[8]PARK D J, GREEN A R, LEE Y S, et al. Experimental studies on interactions between a freely propagating flame and single obstacles in a rectangular confinement [J]. Combustion and Flame, 2007, 150(1-2):27-39.
[9]HALL R, MASRI A R, YAROSHCHYK P, et al. Effects of position and frequency of obstacles on turbulent premixed propagating flames [J].Combustion and Flame, 2009, 156(2):439-446.
[10]SARLI V D, BENEDETTO A D, RUSSO G. Using large eddy simulation for understanding vented gas explosions in the presence of obstacles [J]. Journal of Hazardous Materials, 2009, 169(1-3):435-442.
[11]BAUWENS C R, CHAFFEE J, DOROFEEV S. Effect of ignition location, vent size, and obstacles on vented explosion overpressures in propane-air mixtures [J].Combustion Science and Technology, 2010, 182(11-12):1915-1932.
[12]WEN X P, YU M G, LIU Z C, et al. Effects of cross-wise obstacle position on methane-air deflagration characteristics [J]. Journal of Loss Prevention in the Process Industries, 2013, 26: 1335-1340.
[13]WOOLLEY R M, FAIRWEATHER M, FALLE S A E G, et al. Prediction of confined, vented methane-hydrogen explosions using a computational fluid dynamic approach [J]. International Journal of Hydrogen Energy, 2013, 38(16):6904-6914.
[14]TOMLIN G, JOHNSON D M, CRONIN P, et al. The effect of vent size and congestion in large-scale vented natural gas/air explosions [J]. Journal of Loss Prevention in the Process Industries, 2015, 35:169-181.
[15]HISKEN H, ENSTAD G A, MIDDHA P, et al. Investigation of concentration effects on the flame acceleration in vented channels [J]. Journal of Loss Prevention in the Process Industries, 2015, 36(1):447-459.
[16]SALZANO E, MARRA F S, RUSSO G, et al. Numerical simulation of turbulent gas flames in tubes [J].Journal of Hazardous Materials, 2002, 95(3):233-247.
[17]BRETISLAV J, PETR S, JAN H, et al. Vented confined explosions inStramberk experimental mine and AutoReaGas simulation [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2):280-287.
[18]WANG Y X, LIAN Z, ZHANG Q, Effect of ignition location and vent on hazards of indoor liquefied petroleum gas explosion [J]. Combustion Science & Technology, 2017, 189(4):698-716.
[19]庞磊, 张奇, 李伟, 等.煤矿巷道瓦斯爆炸冲击波与高温气流的关系[J].高压物理学报, 2011, 25 (5): 457-462. PANG Lei, ZHANG Qi, LI Wei, et al. Relationship between shock wave and high-temperature flow produced by gas explosion in coal mine roadways[J]. Chinese Journal of High Pressure Physics, 2011, 25 (5): 457-462.

相似文献/References:

[1]候红霄,张树海,张彩芳,等.小环境密闭空间初始压力对预混合可燃性气体爆炸的影响[J].中国安全生产科学技术,2012,8(2):74.
 HOU Hong xiao,ZHANG Shu hai,ZHANG Cai fang,et al.The effect of initial pressure on the explosion of premixed combustible gas in the environment of small confined space[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(12):74.
[2]杨凡,陶刚,张礼敬,等.障碍物对气体爆炸压力场影响数值模拟[J].中国安全生产科学技术,2013,9(2):59.
 YANG Fan,TAO Gang,ZHANG Li jing,et al.Numerical simulation on sinfluence of obstacle on the pressure field of combustible gas explosion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(12):59.
[3]吴运逸,雷海丽.加气站压缩机间气体爆炸数值模拟研究[J].中国安全生产科学技术,2013,9(11):59.[doi:10.11731/j.issn.1673-193x.2013.11.010]
 WU Yun yi,LEI Hai li.Numerical simulation on gas explosions in compression compartment of gas filling station[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(12):59.[doi:10.11731/j.issn.1673-193x.2013.11.010]
[4]郭丹彤,吕淑然,杨凯.障碍物布置对气体爆炸压力场的影响效果研究[J].中国安全生产科学技术,2015,11(9):88.[doi:10.11731/j.issn.1673-193x.2015.09.014]
 GUO Dan-tong,LYU Shu-ran,YANG Kai.Research on impact effect of obstacle arrangement to pressure field of gas explosion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(12):88.[doi:10.11731/j.issn.1673-193x.2015.09.014]
[5]郭丹彤,吕淑然.受限空间障碍物截面变化对混合气体爆炸特性参数的影响研究[J].中国安全生产科学技术,2016,12(2):83.[doi:10.11731/j.issn.1673-193X.2016.02.015]
 GUO Dantong,LYUShuran.Research on influence to characteristic parameters of mixed gas explosion by section variation of obstacle in confined space[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(12):83.[doi:10.11731/j.issn.1673-193X.2016.02.015]
[6]陈长坤,雷鹏,史聪灵,等.公路隧道内氢气和丙烷爆炸数值模拟对比分析[J].中国安全生产科学技术,2017,13(1):151.[doi:10.11731/j.issn.1673-193x.2017.01.025]
 CHEN Changkun,LEI Peng,SHI Congling,et al.Comparative numerical simulation analysis on explosion of hydrogen and propane in highway tunnel[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(12):151.[doi:10.11731/j.issn.1673-193x.2017.01.025]
[7]陈鹏,孙永夺.泡沫金属对甲烷/空气爆燃火焰的淬熄实验研究[J].中国安全生产科学技术,2017,13(7):37.[doi:10.11731/j.issn.1673-193x.2017.07.006]
 CHEN Peng,SUN Yongduo.Experiment study on quenching effect of foam metal on methane-air deflagration flame[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(12):37.[doi:10.11731/j.issn.1673-193x.2017.07.006]
[8]梁滔,孙永夺,杨锡军.泡沫镍对甲烷-空气预混气体爆燃超压影响的研究[J].中国安全生产科学技术,2017,13(8):170.[doi:10.11731/j.issn.1673-193x.2017.08.027]
 LIANG Tao,SUN Yongduo,YANG Xijun.Study on effect of nickel foam on deflagration overpressure of methane-air premixed gas[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(12):170.[doi:10.11731/j.issn.1673-193x.2017.08.027]
[9]陈长坤,张宇伦,赵小龙,等.隧道内槽罐车对甲醇蒸气爆炸压力场影响的数值模拟分析[J].中国安全生产科学技术,2018,14(4):126.[doi:10.11731/j.issn.1673-193x.2018.04.020]
 CHEN Changkun,ZHANG Yulun,ZHAO Xiaolong,et al.Numerical simulation analysis on influence of tankers on pressure field of methyl alcohol vapor explosion in tunnel[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(12):126.[doi:10.11731/j.issn.1673-193x.2018.04.020]

备注/Memo

备注/Memo:
收稿日期: 2018-09-11;数字出版日期:2018-12-23
基金项目: 国家重点研发计划课题(2017YFC0804700);北京市科技新星计划项目(Z181100006218092);北京市优秀人才培养资助青年拔尖个人项目(2016000026833ZK05);国家安监总局安全生产重大事故防治关键技术科技项目(Beijing-0002-2017AQ)
作者简介: 杨凯,博士,讲师,主要研究方向为爆炸安全。
通信作者: 庞磊,博士,副教授,主要研究方向为爆炸安全。
更新日期/Last Update: 2019-01-03