|本期目录/Table of Contents|

[1]钟茂华,刘畅,杨宇轩,等.地铁单面坡隧道列车火灾通风模式研究[J].中国安全生产科学技术,2018,14(12):5-13.[doi:10.11731/j.issn.1673-193x.2018.12.001]
 ZHONG Maohua,LIU Chang,YANG Yuxuan,et al.Study on ventilation mode for train fire in metro tunnel with singleside slope[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(12):5-13.[doi:10.11731/j.issn.1673-193x.2018.12.001]
点击复制

地铁单面坡隧道列车火灾通风模式研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年12期
页码:
5-13
栏目:
学术论著
出版日期:
2018-12-31

文章信息/Info

Title:
Study on ventilation mode for train fire in metro tunnel with singleside slope
文章编号:
1673-193X(2018)-12-0005-09
作者:
钟茂华1刘畅2杨宇轩1胡家鹏3田向亮1龙增1
(1.清华大学 工程物理系 公共安全研究院,北京 100084;2.东北大学 资源与土木工程学院, 辽宁 沈阳 110819;3.北京市轨道交通设计研究院有限公司,北京 100068)
Author(s):
ZHONG Maohua1 LIU Chang2 YANG Yuxuan1 HU Jiapeng3 TIAN Xiangliang1 LONG Zeng1
(1. Institute of Public Safety Research, Department of Engineering Physics,Tsinghua University, Beijing 100084, China;2. College of Resources and Civil Engineering, Northeastern University, Shenyang Liaoning 110819, China;3.Beijing Rail and Transit Design & Research Institute Co., Ltd., Beijing 100068, China)
关键词:
地铁单面坡隧道火灾通风模式
Keywords:
metro singleside slope tunnel fire ventilation mode
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2018.12.001
文献标志码:
A
摘要:
针对地铁单面坡隧道连续下坡距离长、提升高度大的特点,以国内某城市地铁线路为研究对象,构建列车火灾通风排烟数值计算模型,并采用1:20模型实验对数值计算精确度进行验证,通过考虑列车起火位置、风机开启模式和隧道断面形式等因素,对火灾烟气扩散过程、疏散平台上方烟气温度和气体浓度进行分析。研究结果表明:列车起火后,单洞单线隧道2端车站应各开启2台隧道风机,单洞双线隧道除开启射流风机外,2端车站应各开启4台隧道风机执行相应的排烟和送风模式进行烟气控制;由于单洞双线隧道中热损失和空气卷吸量较大,火灾烟气温度、CO和CO2浓度均低于单洞单线隧道;采用纵向通风控制烟气逆流的同时,下风向区域的烟气沉降作用较为明显,防排烟设计中应充分考虑列车中部火灾下风向车厢区域的危险性,合理确定应急响应模式。
Abstract:
Aiming at the characteristics of long continuous downhill distance and large lifting height in the metro tunnel with singleside slope, taking the metro line of a city in China as the research object, a numerical calculation model on ventilation and smoke exhaust of train fire was constructed, and the accuracy of numerical calculation was verified by using the 1:20 model experiments. Considering the factors such as the location of train fire, activation mode of fans, section form of tunnel and other factors, the diffusion process of fire smoke and the smoke temperature and gas concentration above the evacuation platform were analyzed. The results showed that after the occurrence of train fire, the stations at both ends of singlehole and singletrack tunnel should activate two tunnel fans respectively, and the stations at both ends of singlehole and doubletrack tunnel should activate four tunnel fans respectively and execute the corresponding smoke exhaust and air supply mode to control the smoke in addition to activating the jet fans. Due to the larger heat loss and air entrainment in the singlehole and doubletrack tunnel, the smoke temperature, CO concentration and CO2 concentration were lower than those in the singlehole and singletrack tunnel. When the longitudinal ventilation was activated to control the smoke backflow, the smoke descendent effect in the downwind area was more obvious. The risk of downwind carriage area in case of fire at middle of train should be fully considered in the design of smoke control and exhaust, and the emergency response mode should be determined reasonably.

参考文献/References:

[1]中铁第一勘察设计院集团有限公司.乌鲁木齐轨道交通一号线工程(三屯碑~机场)可行性研究报告-线路单面坡安全性研究专题报告[R].2013.
[2]YU L X, LIU F, LIU Y Q ,et al.Experimental study on thermal and smoke control using transverse ventilation in a sloping urban traffic link tunnel fire [J]. Tunnelling and Underground Space Technology, 2018(71):81-93.
[3]ZHONG M H, SHI C L, HE L, et al.Smoke development in full-scale sloped long and large curved tunnel fires under natural ventilation[J]. Applied Thermal Engineering, 2016(108): 857-865.
[4]JI J, WAN H X, LI K Y, et al.A numerical study on upstream maximum temperature in inclined urban road tunnel fires[J]. International Journal of Heat and Mass Transfer, 2015, 88(1): 516-526.
[5]GUO XX, PAN X H, WANG Z L, et al.Numerical simulation of fire smoke in extra-long river-crossing subway tunnels[J]. Tunnelling and Underground Space Technology, 2018(82):82-98.
[6]HU L H, CHEN L F, WU L, et al.An experimental investigation and correlation on buoyant gas temperature below ceiling in a slopping tunnel fire[J]. Applied Thermal Engineering, 2013, 51(1-2):246-254.
[7]张少刚. 地铁列车对区间隧道火灾逆流烟气输运特性影响的研究[D].合肥:中国科学技术大学,2017.
[8]ROH J S, RYOU H S, PARK W H , et al. CFD simulation and assessment of life safety in a subway train fire[J]. Tunneling and Underground Space Technology, 2009, 24(4):447-453.
[9]MORGAN J H. SFPE Handbook of Fire Protection Engineering[M].Springer New York Heidelberg Dordrecht London, 2016.
[10]MCGRATTAN K, FORNEY GP.Fire Dynamics Simulator User’s Guide [M]. NIST Special Publication, 2008.
[11]ZHAO S Z, LIU F, WANG F, et al.A numerical study on smoke movement in a metro tunnel with a non-axisymmetric cross-section[J]. Tunnelling and Underground Space Technology, 2018(73): 187-202.
[12]HSU W S, HUANG Y H, SHEN T S, et al.Analysis of the Hsuehshan Tunnel Fire in Taiwan[J].Tunnelling and Underground Space Technology, 2017(69): 108-115.
[13]HUANG Y B, LI Y F, DONG B Y, et al.Numerical investigation on the maximum ceiling temperature and longitudinal decay in a sealing tunnel fire[J].Tunnelling and Underground Space Technology, 2018(72): 120-130.
[14]GAO R, LI A G, ZHANG Y, et al.How domes improve fire safety in subway stations [J]. Safety Science, 2015(80):94-104.

相似文献/References:

[1]史聪灵.地铁换乘车站客流疏运模拟及风险分析(1)-T型车站[J].中国安全生产科学技术,2011,7(4):11.
 SHI-Cong-ling.Simulation and risk analysis on passenger transportation of metro transfer station(1)-T-type station[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(12):11.
[2]邓军,王萌.地铁火灾监控技术发展的德尔菲预见性分析[J].中国安全生产科学技术,2011,7(5):77.
 Deng Jun,?Wang Meng.Delphi technology foresight analysis on development of the metro fire monitoring system[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(12):77.
[3]王震,贺农农.西安地铁工程安全文化的建立[J].中国安全生产科学技术,2011,7(5):159.
 WANG Zhen,HE Nong-nong.Establishment of safety culture in Xi’an metro engineering[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(12):159.
[4]史聪灵,钟茂华,张岚,等.地铁换乘车站客流疏运模拟及风险分析(2)——单通道换乘车站[J].中国安全生产科学技术,2011,7(8):21.
 SHI Cong-ling,ZHONG Mao-hua,ZHANG Lan,et al.Simulation and risk Analysis on passenger transportation of metro transfer station(2)——Single passage transferring Station[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(12):21.
[5]马骏.扩孔型锚固技术在西安地铁工程中的应用[J].中国安全生产科学技术,2011,7(9):195.
 MA Jun.Anchor hole enlargement technology in Xi’an Subway Project[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(12):195.
[6]刘新军.西安地铁穿越地裂缝带支护结构设计研究[J].中国安全生产科学技术,2012,8(2):144.
 LIU Xin jun.Design of support structure of Xi’an metro through ground fissure[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(12):144.
[7]郭雩,何理,石杰红,等.地铁不同人群疏散行为特征调查问卷研究[J].中国安全生产科学技术,2012,8(4):183.
 GUO Yu,HE Li,SHI Jie hong,et al.Questionnaire research on the evacuation behavior characteristics of different crowds in subway[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(12):183.
[8]雷斌,曹振,张宁.西安地铁安全文化体系建设研究[J].中国安全生产科学技术,2012,8(6):221.
 LEI Bin,CAO Zhen,ZANG Ning.Study on system constructions of safety culture in Xi’an metro[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(12):221.
[9]史聪灵,钟茂华,汪良旗,等.地铁车站及隧道全尺寸火灾实验研究(2) ——区间隧道火灾[J].中国安全生产科学技术,2012,8(8):28.
 SHI Cong ling,ZHONG Mao hua,WANG Liang qi,et al.Investigation of fullscale burning experiments in metro station and tunnel (2) -interval tunnel fires[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(12):28.
[10]王垚,冯超.地铁车站深基坑围护桩优化及其数值分析[J].中国安全生产科学技术,2013,9(2):54.
 WAGN Yao,FENG Chao.Numerical analysis and optimization on supporting piles in deep foundation fit of metro station[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(12):54.

备注/Memo

备注/Memo:
收稿日期: 2018-11-02
基金项目: 国家重点研发计划项目(2016YFC0802500);国家自然科学基金项目(51674152,51425404)
作者简介: 钟茂华,博士,教授,主要研究方向为地铁安全。
更新日期/Last Update: 2019-01-03