|本期目录/Table of Contents|

[1]管锋,王振,刘少胡,等.连续管复合裂纹的应力强度因子有限元分析[J].中国安全生产科学技术,2018,14(10):76-81.[doi:10.11731/j.issn.1673-193x.2018.10.012]
 GUAN Feng,WANG Zhen,LIU Shaohu,et al.Finite element analysis on stress intensity factor for composite cracks of coiled tubing[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(10):76-81.[doi:10.11731/j.issn.1673-193x.2018.10.012]
点击复制

连续管复合裂纹的应力强度因子有限元分析
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年10期
页码:
76-81
栏目:
职业安全卫生管理与技术
出版日期:
2018-10-31

文章信息/Info

Title:
Finite element analysis on stress intensity factor for composite cracks of coiled tubing
文章编号:
1673-193X(2018)-10-0076-06
作者:
管锋1王振1刘少胡1 杨明合2
(1.长江大学 机械工程学院,湖北 荆州 434023;2.长江大学 石油工程学院,湖北 武汉 430100)
Author(s):
GUAN Feng1 WANG Zhen1 LIU Shaohu1 YANG Minghe2
(1. School of Mechanical Engineering, Yangtze University, Jingzhou Hubei 434023, China;2. School of Petroleum Engineering, Yangtze University, Wuhan Hubei 430100, China)
关键词:
复合裂纹:XFEM应力强度因子CT80连续管
Keywords:
composite crack XFEM stress intensity factor CT80 coiled tubing
分类号:
X937;TE938
DOI:
10.11731/j.issn.1673-193x.2018.10.012
文献标志码:
A
摘要:
针对解析法计算连续管复合裂纹应力强度因子繁琐的问题,引入扩展有限元法(XFEM)进行分析。应用有限元软件ABAQUS计算不同裂纹角度对应的连续管Ⅰ,Ⅱ,Ⅲ型裂纹的裂尖应力强度因子KⅠ,KⅡ,KⅢ,分析了裂纹角度对应力强度因子的影响,并模拟得到了受单向拉伸载荷的连续管裂纹扩展的整个过程。研究结果表明:扩展有限元解与计算解很接近,验证了利用扩展有限元法计算复合型应力强度因子的有效性。随着裂纹夹角θ的增大,裂尖处KⅠ不断减小、KⅡ始终很小,可以忽略、KⅢ先增大后减小、总应力强度因子K不断减小。通过扩展有限元法计算出裂尖应力强度因子,可有效预测含裂纹CT80连续管的安全性。
Abstract:
Aiming at the problem that it is very tedious to calculate the stress intensity factor for the composite cracks of coiled tubing by using the analytical method, the analysis was carried out by introducing into the extended finite element method (XFEM). The stress intensity factor KⅠ, KⅡ and KⅢ for the type Ⅰ, Ⅱ and Ⅲ crack tip of coiled tubing corresponding to different crack angles were calculated by using the finite element software ABAQUS, then the influence of crack angle on the stress intensity factor was analyzed, and the whole process of crack propagation for the coiled tubing under the unidirectional tensile load was obtained by the simulation. The results showed that the solution of XFEM was very close to the calculation solution, which verified the effectiveness of calculating the composite stress intensity factor by using XFEM. With the increase of crack angle θ, KⅠ decreased continually and KⅡ was always very small at the crack tip, which could be ignored, while KⅢ increased first and then decreased, and the total stress intensity factor K decreased continually. The stress intensity factor of crack tip can be calculated by using XFEM, and the safety of CT80 coiled tubing containing cracks can be predicted effectively.

参考文献/References:

[1]王优强,张嗣伟. 连续油管的失效形式与原因概述[J]. 石油矿场机械, 1999,28(4):15-18. WANG Youqiang,ZHANG Siwei. Description of failure form and reason of coiled tubing [J]. Oil Field Machinery,1999,28(4):15-18.
[2]Intervention & Coiled Tubing Association. Worldwide coiled tubing rig count [EB/OL]. (2017-12) [2018-08-01]. http:/ /www.icota.com/ctrigcount.htm.
[3]李子丰,李雪娇,王鹏. 预弯曲连续油管及其疲劳寿命预测[J]. 石油学报,2012,33(4):706-707. LI Zifeng,LI Xuejiao,WANG Peng. Prediction of prebent coiled tubing and its fatigue life[J]. Acta Petrolei Sinica,2012,33(4):706-707.
[4]周恒. 疲劳裂纹扩展仿真方法研究[D]. 武汉:武汉理工大学,2014.
[5]胡卫华,吕运冰. 周期性Ⅰ-Ⅱ复合型裂纹的应力强度因子[J]. 武汉理工大学学报(交通科学与工程版), 2002, 26(1):123-125. HU Weihua,LYU Yunbing. Stress intensity factors of periodic mixed crack I-Ⅱ [J]. Journal of Wuhan University of Technology (Transportation Science & Engineering) ,2002,26(1):123-125.
[6]WANG Yuanhan,WU Youlun,YU Fei.Fracture calculation of bending plates by boundary collocation method[J].Applied Mathematics and Mechanics (English Edition),2003,24(6): 684-690.
[7]庄茁.扩展有限单元法[M].北京:清华大学出版社,2012.
[8]FENG C, PING C, RAO Q H, et al. Mode II fracture analysis of double edge cracked circular disk subjected to different diametral compression[J]. Journal of Central South University, 2004, 11(1):63-68.
[9]MELENK J M, BABUSKA I. The partition of unity finite element method: Basic theory and applications[J]. Computer Methods in Applied Mechanics and Engineering,1996,139(1-4):289-314.
[10]BELYTSCHKO T,MOES N,USUI S,et al. Arbitrary discontinuities in finite elements[J]. International Journal for Numerical Methods in Engineering,2015,50(4):993-1013.
[11]PANG J H L,TSANG K S,HOH H J.3D stress intensity factors for weld toe semi-elliptical surface cracks using XFEM[J]. Marine Structures,2016,48:1-14.
[12]GIOVANARDI B,SCOTTI A,FORMAGGIA L. A hybrid XFEM-Phase field method for crack propagation in brittle elastic materials[J]. Computer Methods in Applied Mechanics & Engineering,2017,320: 396-420.
[13]WEN Longfei,TIAN Rong. Improved XFEM: Accurate and robust dynamic crack growth simulation[J].Computer Methods in Applied Mechanics & Engineering, 2016, 308:256-285.
[14]FEULVARCH E,FONTAINE M,MICHELBERGHEAUA J. XFEM investigation of a crack path in residual stresses resulting from quenching [J]. Finite Elements in Analysis and Design,2013,75:62-70.
[15]余天堂. 不连续问题的扩展有限元法分析[J]. 船舶力学, 2007, 11(5):716-722. YU Tiantang.Extended finite element analysis for discontinuous problems[J]. Ship Mechanics,2007,11(5):716-722.
[16]GINER E,SUKUMAR N,TARANCON J E,et al. An abaqus implementation of the extended finite element method[J]. Engineering Fracture Mechanics,2009,76(3):347-368.
[17]GHAFFARI D,AHMADI S R,SHABANI F. XFEM simulation of a quenched cracked glass plate with moving convective boundaries[J]. Comptes Rendus-Mécanique,2016,344(2):78-94.
[18]钱士强,高桦. 全复合型裂纹疲劳扩展门槛限估算[J]. 机械强度, 1995,17(1):17-21. QIAN Shiqiang,GAO Hua. Estimation of fatigue threshold value for all composite cracks [J]. Mechanical Strength,1995,17(1):17-21.
[19]徐慧,伍晓赞,程仕平,等. 复合裂纹的应力强度因子有限元分析[J].中南大学学报(自然科学版),2007,38(1):79-83. XU Hui,WU Xiaozan,CHENG Shiping,et al. Finite element analysis of stress intensity factor of composite crack [J]. Journal of Central South University( Science and Technology),2007,38(1):79-83.
[20]赵章明. 连续油管工程技术手册 [M]. 北京:石油工业出版社, 2003:74-78.
[21]IRWIN G R. Crack-extension force for a part-through crack in a plate[J]. Journal of Applied Mechanics,1962,29(4):651-654.
[22]中国航空研究院.应力强度因子手册 [M]. 北京:科学出版社,1993:408-411.
[23]汪德根,邓枝生.金属材料断裂韧性数据手册[J].冶金分析与测试(冶金物理测试分册),1985(1):59-64.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2018-08-01
基金项目: 国家自然科学基金项目(51604039);国家科技重大专项课题(2017ZX05070-005);长江大学长江青年科技创新团队基金项目(2016cqt01);长江大学青年基金项目(2015cqn44)
作者简介: 管锋,博士,教授,主要研究方向为海洋工程装备设计与分析。
更新日期/Last Update: 2018-11-07