|本期目录/Table of Contents|

[1]陆争光,夏志,阮哲,等.海洋平台圆柱体坠落运动轨迹及落点分析[J].中国安全生产科学技术,2018,14(8):41-47.[doi:10.11731/j.issn.1673-193x.2018.08.007]
 LU Zhengguang,XIA Zhi,RUAN Zhe,et al.Analysis on motion trajectory and landing points of dropped cylinder on offshore platform[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(8):41-47.[doi:10.11731/j.issn.1673-193x.2018.08.007]
点击复制

海洋平台圆柱体坠落运动轨迹及落点分析
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年8期
页码:
41-47
栏目:
学术论著
出版日期:
2018-08-31

文章信息/Info

Title:
Analysis on motion trajectory and landing points of dropped cylinder on offshore platform
文章编号:
1673-193X(2018)-08-0041-07
作者:
陆争光夏志阮哲黄冬云王祺来
(中海油研究总院有限责任公司,北京 100028)
Author(s):
LU Zhengguang XIA Zhi RUAN Zhe HUANG Dongyun WANG Qilai
(CNOOC Research Institute Co., Ltd., Beijing 100028, China)
关键词:
圆柱体落物3D运动MREDP轨迹落点DNVGL-RP-F107
Keywords:
cylinder dropped object theredimensional (3D) motion MREDP trajectory landing point DNVGL-RP-F107
分类号:
X937;TE58
DOI:
10.11731/j.issn.1673-193x.2018.08.007
文献标志码:
A
摘要:
传统的角度偏差经验值方法导致落物风险评价过程中的落点和危险区预测存在较大误差,科学化、立体化、完整化、多因素概化的落物轨迹和落点分析方法及工具缺位。为此,以海洋平台圆柱体落物为研究对象开展先导研究,在2D运动理论模型基础上,考虑3维、6度受力与运动参数,引入粘性拖曳力系数经验公式、海流运动、旋转升力和力矩项,建立了具有普适性的落物水下3D运动轨迹预测模型,并以现场实验数据校验表明模型方法可行、结果更可信;据此以Matlab 2016为程序设计平台编制了海洋平台圆柱体坠落运动预测分析工具(MREDP),分析了坠落运动落点分布规律。研究结果表明:随着初始倾斜角度的增大,落点偏移距离呈现先增后降的趋势,于62°时达到最大值,运动轨迹整体呈现螺线曲率减小、向轨迹曲线外开口侧偏移趋势;落点分布变化可分为Y轴偏移稳定主导阶段、X轴偏移实力型快速主导阶段和X轴偏移机会型主导阶段3个阶段;相对MREDP预测结果,DNVGL-RP-F107经验性角度偏差推荐结果较为保守,MREDP可为DNVGL-RP-F107提供更加准确、可信的轨迹曲线和落点取值。基于分析结果,提出了采用Monte Carlo方法表征实际工程中起始运动参数随机性和入水撞击产生的不确定性等建议。
Abstract:
The traditional empirical value method of angle deviation will cause the relatively big error in the prediction of landing points and risk zone during the risk assessment process of dropped objects, so the scientific, stereoscopic, integrated and multifactor generalized analysis methods and tools for the trajectory and landing points of dropped objects have been lacking. Therefore, the precursive research was carried out by taking the cylindrical dropped objects on the offshore platform as the research object. Based on the twodimensional (2D) motion theoretical model, considering the threedimensional and six degrees stress and motion parameters, an universal prediction model for the underwater threedimensional (3D) motion trajectory of dropped objects was established by introducing into the empirical formula of viscous drag force coefficient, ocean current motion, rotational lift force and moment terms, and the verification results of field experimental data showed that the model was feasible with the more credible results. On this basis, a prediction analysis tool for the dropped motion of cylinder on the offshore platform (MREDP) was developed by taking Matlab 2016 as the program design platform, and the distribution laws of landing points of the dropped motion were analyzed. The results showed that with the increase of the initial inclination angle, the offset distance of landing points increased first and then decreased, and reached the maximum value at 62 degree, and the motion trajectory presented the trends of decreasing spiral curvature and offsetting to the outward opening side of the trajectory curve. The change of landing points distribution could be divided into three stages, namely Yaxis offset stability dominant stage, Xaxis offset strength type fast dominant stage and Xaxis offset opportunistic type dominant stage. Compared with the results of MREDP prediction, the recommended results of empirical angle deviation by DNVGL-RP-F107 were more conservative, and MREDP could provide the more accurate and credible trajectory curves and landing points values for DNVGL-RP-F107. Based on the analysis results, some suggestions were put forward, such as adopting the Monte Carlo method to represent the randomness of initial motion parameters and the uncertainty caused by the impact of water entry in the practical engineering.

参考文献/References:

[1]王红红, 刘国恒. 中国海油海底管道事故统计及分析[J]. 中国海上油气, 2017, 29(5):157-160. WANG Honghong,LIU Guoheng.Statistics and analysis of subsea pipeline accident of CNOOC[J].China Offshore Oil and Gas, 2017, 29(5):157-160.
[2]XIANG G, BIRK L, LI L, et al. Risk free zone study for cylindrical objects dropped into the water[J]. Ocean Systems Engineering,2016, 6(4):377-400.
[3]XIANG G, BIRK L, YU X, et al. Study on the trajectory and landing points of dropped cylindrical object with different longitudinal center of gravity[J]. International Journal of Offshore & Polar Engineering, 2017, 27(3):274-282.
[4]AWOTAHEGN M B.Experimental investigation of accidental drops of drill pipes and containers[D].California:University of Stavanger,2015:36-63.
[5]AANESLAND V,MARINTEK NS.Numerical and experimental investigation of accidentally falling drilling pipes[C]// Huston:19th Offshore Technology Conference, 1987:117-125.
[6]COLWILL A D,AHILAN A V.Reliability analysis of the behavior of dropped objects[C]//Huston:24th Offshore Technology Conference, 1992:413-420.
[7]GILLES A F.Mine drop experiment (MIDEX) [D]. Monterey:Naval Postgraduate School, 2001:33-129.
[8]CHU P C,FAN C.Prediction of falling cylinder through air-water-sediment columns[J]. Journal of Applied Mechanics, 2006, 73(2):300-314.
[9]CHU P C, SMITH T B,HAEGER S D.Mine impact burial prediction experiment[J].Applied Mechanics Reviews, 2002, 62(1):121-128.
[10]CHU P C,GILLES A,FAN C.Experiment of falling cylinder through the water column[J].Experimental Thermal & Fluid Science, 2005, 29(5):555-568.
[11]AWOTAHEGN M B,OOSTERKAMP L D, NYSTROM P R. 3D study of dropped object motion in sea water based on scale test[C]//Rhodes:Proceedings of the Twenty-sixth International Ocean and Polar Engineering Conference, 2016:241-252.
[12]LUO Y,DAVIS J.Motion simulation and hazard assessment of dropped objects[C]// San Francisco:Proceedings of the Second International Offshore and Polar Engineering Conference, 1992: 604-611.
[13]MANN J, LIU Y, KIM Y, et al. Deterministic and stochastic predictions of motion dynamics of cylindrical mines falling through water[J]. IEEE Journal of Oceanic Engineering, 2007, 32(1):21-33.
[14]XIANG G,BIRK L,YU X,et al.Numerical study on the trajectory of dropped cylindrical objects[J]. Ocean Engineering, 2017, 130(2):1-9.
[15]DNV.Risk assessment of pipeline protection:DNV-RP-F107[S].Norway:DNV, 2017.
[16]BREIVIK, OYVIND,ALLEN A A,et al.Advances in search and rescue at sea[J].Ocean Dynamics, 2013, 63(1):83-88.

相似文献/References:

[1]周世博,章文俊,李泽华,等.基于SAPSO-BP网络模型的海洋平台落物碰撞损伤分析[J].中国安全生产科学技术,2019,15(2):64.[doi:10.11731/j.issn.1673-193x.2019.02.010]
 ZHOU Shibo,ZHANG Wenjun,LI Zehua,et al.Analysis on impacting damage of dropped object on offshore platform based on SAPSO-BP network model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(8):64.[doi:10.11731/j.issn.1673-193x.2019.02.010]
[2]陆争光,韩亚冲,李虎,等.基于Monte Carlo的海洋平台圆柱落物落点分析及危险区快速评价*[J].中国安全生产科学技术,2021,17(5):39.[doi:10.11731/j.issn.1673-193x.2021.05.006]
 LU Zhengguang,HAN Yachong,LI Hu,et al.Analysis on landing points of cylindrical dropped objects and fast evaluation of risk zone on offshore platform based on Monte Carlo method[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(8):39.[doi:10.11731/j.issn.1673-193x.2021.05.006]

备注/Memo

备注/Memo:
工信部创新专项“第七代超深水钻井平台(船)创新专项”(工信部联装[2016]24号)
更新日期/Last Update: 2018-09-03