|本期目录/Table of Contents|

[1]韩颖,张飞燕,刘少飞.模拟煤层钻进过程中钻孔稳定性试验研究[J].中国安全生产科学技术,2018,14(7):32-39.[doi:10.11731/j.issn.1673-193x.2018.07.005]
 HAN Ying,ZHANG Feiyan,LIU Shaofei.Experimental study on borehole stability during drilling process in simulated coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(7):32-39.[doi:10.11731/j.issn.1673-193x.2018.07.005]
点击复制

模拟煤层钻进过程中钻孔稳定性试验研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年7期
页码:
32-39
栏目:
学术论著
出版日期:
2018-07-31

文章信息/Info

Title:
Experimental study on borehole stability during drilling process in simulated coal seam
文章编号:
1673-193X(2018)-07-0032-08
作者:
韩颖123张飞燕45刘少飞1
(1. 河南理工大学 能源科学与工程学院,河南 焦作 454000;2. 中原经济区煤层(页岩)气河南省协同创新中心,河南 焦作 454000;3. 深井岩层控制与瓦斯抽采国家安监局科技支撑平台,河南 焦作 454000;4. 河南理工大学 安全科学与工程学院,河南 焦作 454000;5. 河南省瓦斯地质与瓦斯治理重点实验室—省部共建国家重点实验室培育基地,河南 焦作 454000)
Author(s):
HAN Ying123 ZHANG Feiyan45 LIU Shaofei1
1. School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo Henan 454000, China;2. Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region (Henan Province), Jiaozuo Henan 454000, China;3. Technology Platform of Deep Mine Strata Control and Methane Drainage for State Administration of Work Safety, Jiaozuo Henan 454000, China;4. School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo Henan 454000, China;
关键词:
模拟煤层钻进过程钻孔稳定性监测系统峰值应力
Keywords:
simulated coal seam drilling process borehole stability monitoring system peak stress
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2018.07.005
文献标志码:
A
摘要:
钻孔钻进过程的实验室模拟及失稳现象捕捉,是钻孔失稳破坏机制研究的关键环节。通过构建模拟煤层钻进过程中钻孔失稳监测系统及方法,探讨了轴压、吸附平衡压力、气体种类及煤的变质程度对钻孔稳定性的影响规律,得出不同试验条件下的孔周煤体应力变化及孔壁、孔底破坏特征。研究结果表明:随轴压及吸附平衡压力的增大,孔周煤体峰值应力最大值逐渐增大,孔壁变形及孔底破坏趋于严重,甚至发生喷孔;与N2相比,当煤样吸附CO2时,孔周煤体峰值应力最大值较大,孔壁变形及孔底破坏也较为严重;随煤的变质程度的加大,孔周煤体峰值应力最大值及卸压范围呈先增大后减小的趋势,试验所用焦煤应力集中现象及孔壁、孔底破坏程度最为严重。
Abstract:
The laboratory simulation and the capture of instability phenomenon for the borehole drilling process are the key links in the study on the borehole instability and failure mechanism. Through establishing the monitoring system and method of borehole instability during the drilling process in the simulated coal seam, the influence of axial pressure, adsorption equilibrium pressure, gas type and metamorphic degree of coal on the borehole stability was discussed, then the stress change of coal body around the borehole and the failure characteristics of borehole wall and bottom under different experimental conditions were obtained. The results showed that with the increase of axial pressure and adsorption equilibrium pressure, the maximum peak stress of coal body around the borehole increased gradually, and the deformation of borehole wall and the failure of borehole bottom tended to be more serious, even the borehole blowout occurred. Compared with nitrogen, when the coal samples adsorbed carbon dioxide, the maximum peak stress of coal body around the borehole was larger, and the deformation of borehole wall and the failure of borehole bottom were also more serious. With the increase of the metamorphic degree of coal, the maximum peak stress and the pressure relief range of coal body around the borehole increased first and then decreased, and the stress concentration phenomenon and the failure degree of borehole wall and bottom for the coking coal used in the experiments were the most serious.

参考文献/References:

[1]韩颖,张飞燕. 煤层钻孔失稳机理研究进展[J]. 中国安全生产科学技术,2014,10(4):114-119. HAN Ying, ZHANG Feiyan. Progress in research on instability mechanism of coalbed borehole [J]. Journal of Safety Science and Technology, 2014, 10(4): 114-119.
[2]王永龙,孙玉宁,翟新献,等. 松软突出煤层新型钻进技术研究[J]. 采矿与安全工程学报,2012,29(2):289-294. WANG Yonglong, SUN Yuning, ZHAI Xinxian, et al. Study on new drilling technology in soft and outburst seam [J]. Journal of Mining & Safety Engineering, 2012, 29(2): 289-294.
[3]林柏泉,李庆钊,杨威,等. 基于千米钻机的“三软”煤层瓦斯治理技术及应用[J]. 煤炭学报,2011,36(12):1968-1973. LIN Baiquan, LI Qingzhao, YANG Wei, et al. Gas control technology and applications for the three-soft coal seam based on VLD-1000 drilling systems [J]. Journal of China Coal Society, 2011, 36(12): 1968-1973.
[4]王永龙,翟新献,孙玉宁. 刻槽钻杆应用于突出煤层钻进的合理参数研究[J]. 煤炭学报,2011,36(2):304-307. WANG Yonglong, ZHAI Xinxian, SUN Yuning. Reasonable parameters study on grooved drill pipe used in drilling outburst coal seam [J]. Journal of China Coal Society, 2011, 36(2): 304-307.
[5]SHIRIN L N, DUDLYA N A, FEDOREKO E A.Methane drainage borehole drilling technology status of Ukraine [J]. Procedia Earth and Planetary Science, 2011 (3): 47-52.
[6]HUNGERFORD F, REN T. Directional drilling in unstable environments [J]. International Journal of Mining Science and Technology, 2014, 24(3):397-402.
[7]KARAETLA E, TAHERI A.Three-dimensional hydro-mechanical model of borehole in fractured rock mass using discrete element method [J]. Journal of Natural Gas Science and Engineering, 2018, 53: 263-275.
[8]LIU Chun, ZHOU Fubao, KANG Jianhong, et al. Application of a non-linear viscoelastic-plastic rheological model of soft coal on borehole stability [J]. Journal of Natural Gas Science and Engineering, 2016, 36: 1303-1311.
[9]HASHEMI S S, MOMENI A A, MELKOUMIAN N. Investigation of borehole stability in poorly cemented granular formations by discrete element method [J]. Journal of Petroleum Science and Engineering, 2014, 113(1): 23-35.
[10]ZHANG Jincai. Borehole stability analysis accounting for anisotropies in drilling to weak bedding planes [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60(2): 160-170.
[11]张飞燕,韩颖,杨志龙. 煤层钻孔失稳破坏的数值模拟研究[J]. 中国矿业,2013,22(9):115-117. ZHANG Feiyan, HAN Ying, YANG Zhilong. Numerical simulation of borehole failure in coal seam [J]. China Mining Magazine, 2013, 22(9): 115-117.
[12]韩颖,张飞燕,杨志龙. 煤层钻孔孔壁稳定性分析[J]. 中国安全科学学报,2014,24(6):80-85. HAN Ying, ZHANG Feiyan, YANG Zhilong. Analysis of stability of coalbed borehole wall [J]. China Safety Science Journal, 2014, 24(6): 80-85.
[13]张学博,高建良. 深部开采松软煤层抽采钻孔变形特性研究[J]. 中国安全生产科学技术,2017,13(8):152-158. ZHANG Xuebo, GAO Jianliang. Study on deformation characteristics of drainage borehole in soft coal seam with deep mining [J]. Journal of Safety Science and Technology, 2017, 13(8): 152-158.
[14]河南理工大学. 模拟煤层钻进过程中钻孔动态失稳监测系统:中国,201620433151.0[P]. 2016-10-12.
[15]河南理工大学. 煤层模拟装置:中国,201320067729.1[P]. 2013-08-28.
[16]河南理工大学. 模拟钻进过程钻孔瓦斯涌出速度测定装置:中国,201320067700.3[P]. 2013-08-28.
[17]范俊佳,琚宜文,侯泉林,等. 不同变质变形煤储层孔隙特征与煤层气可采性[J]. 地学前缘,2010,17(5):325-335. FAN Junjia, JU Yiwen, HOU Quanlin, et al. Pore structure characteristics of dif ferent metamorphic-deformed coal reservoirs and its restriction on recovery of coalbed methane [J]. Earth Science Frontiers, 2010, 17(5): 325-335.

相似文献/References:

备注/Memo

备注/Memo:
国家自然科学基金项目(51404093);河南省瓦斯地质与瓦斯治理重点实验室—省部共建国家重点实验室培育基地开放基金项目(WS2012A09,WS2017B11,WS2017A01);国家安全生产监督管理总局安全生产重大事故防治关键技术科技项目(henan-0025-2015AQ,henan-0007-2015AQ);河南省博士后科研项目(2017014);河南省教育厅科学技术研究重点项目(14A440012);焦作市科技计划项目(2014400013);河南理工大学博士基金项目(B2008-15,B2012-093)
更新日期/Last Update: 2018-08-09