|本期目录/Table of Contents|

[1]田坤云,李度周.不同层理方向裂隙煤体承压过程瓦斯渗透规律实验研究[J].中国安全生产科学技术,2018,14(7):26-31.[doi:10.11731/j.issn.1673-193x.2018.07.004]
 TIAN Kunyun,LI Duzhou.Experimental study on gas permeation laws of fractured coal with different bedding directions during pressure bearing process[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(7):26-31.[doi:10.11731/j.issn.1673-193x.2018.07.004]
点击复制

不同层理方向裂隙煤体承压过程瓦斯渗透规律实验研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年7期
页码:
26-31
栏目:
学术论著
出版日期:
2018-07-31

文章信息/Info

Title:
Experimental study on gas permeation laws of fractured coal with different bedding directions during pressure bearing process
文章编号:
1673-193X(2018)-07-0026-06
作者:
田坤云1李度周2
(1.河南工程学院 安全工程学院,河南 郑州 451191;2.河南大有能源股份有限公司新安煤矿,河南 洛阳 471842)
Author(s):
TIAN Kunyun1 LI Duzhou2
(1. School of Safety Engineering, Henan University of Engineering, Zhengzhou Henan 451191, China;2. Henan Dayou Energy Co., Ltd. Xin’an Coal Mine, Luoyang Henan 471842, China)
关键词:
加卸载裂隙煤体渗透规律原煤样恢复比率
Keywords:
loading and unloading fractured coal permeation laws raw coal sample recovery ratio
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2018.07.004
文献标志码:
A
摘要:
为获取应力加卸载过程中3种不同层理方向裂隙煤体的瓦斯渗透规律,采用应力瓦斯渗透模拟实验装置对加卸载过程平行、斜交及垂直层理方向的原煤试件进行了实验。研究结果表明:加载过程中,3个煤样试件的渗透率与所施加的有效应力成正比,当有效应力最大时平行层理裂隙煤样试件的渗透率的降幅最大,不同层理方向最大渗透率比值为7.2∶1;卸载过程中,渗透率与有效应力之间存在反比关系,在应力卸载初始阶段渗透率增幅不大,当有效应力卸荷到一定程度时,渗透率的增幅陡然增加,相同的卸载条件下,斜交层理试件的渗透率恢复比最大。研究结果可为煤体抽放钻孔布置提供一定参考,以使瓦斯抽采效果最大化。
Abstract:
In order to obtain the gas permeation laws of fractured coal with three different bedding directions during the process of stress loading and unloading, the experiments on the raw coal samples with the parallel, oblique and vertical bedding directions during the loading and unloading process were carried out by using the stress gas permeation simulation experimental device. The results showed that during the loading process, the permeability of three coal samples were directly proportional to the applied effective stress, when the effective stress was the maximum, the decreasing amplitude of the permeability of the fractured coal sample with the parallel bedding was the largest, and the maximum permeability ratio with different bedding directions was 7.2∶1. During the unloading process, the permeability were inversely proportional to the effective stress, the increasing amplitude of the permeability at the initial stage of stress unloading was not significant, while increased sharply when the effective stress was unloaded to a certain degree, and under the same unloading conditions, the permeability recovery ratio of the coal sample with the oblique bedding was the largest. The results can provide certain reference for the drainage borehole layout of coal, so as to maximize the gas drainage effect.

参考文献/References:

[1]孙文忠. 低渗煤层CO2预裂增透高效瓦斯抽采原理及应用[J]. 煤炭科学技术, 2017, 45(1): 100-105. SUN Wenzhong. High efficient gas drainage principle and application of low permeable seam with CO2 pre-fracturing and permeability improvement[J]. Coal Science and Technology, 2017, 45(1): 100-105.
[2]程远平, 付建华, 俞启香. 中国煤矿瓦斯抽采技术的发展[J]. 采矿与安全工程学报, 2009, 26(2): 127-139.CHENG Yuanping, FU Jianhua, YU Qixiang. Development of gas ex-traction technology in coal mines of China[J].Journal of Mining&Safety Engineering, 2009, 26(2) : 127-139.
[3]王龙飞,蒋仲安,陈举师,等.低压注水对煤体孔隙特征及渗透率的影响[J].中国安全生产科学技术,2018,14(6):108-113.WANG Longfei,JIANG Zhongan,CHEN Jushi,et al.Influence of low pressure water injection on pore characteristics and permeability of coal[J].Journal of Safety Science and Technology,2018,14(6):108-113.
[4]田坤云, 徐星, 张瑞林. 构造煤承压过程瓦斯渗透特性实验研究[J] .中国安全生产科学技术, 2016, 12(6):15-19.TIAN Kunyun, XU Xing, ZHANG Ruilin. Experimental study on gas permeation characteristics of tectonic coal during the pressure loading and unloading process[J]. Journal of Safety Science and Technology, 2016, 12(6):15-19.
[5]潘荣锟, 王力, 陈向军, 等. 卸载煤体渗透特性及微观结构应力效应研究[J]. 煤炭科学技术, 2013, 41(7): 75-78. PAN Rongkun, WANG Li, CHEN Xiangjun, et al.Study on permeability characteristics of unloading coal body and stress effect of micro-structure[J]. Coal Science and Technology, 2013, 41(7) :75-78.
[6]田坤云, 齐雷. 应力加卸载下层理裂隙煤体瓦斯渗流试验研究[J]. 中国安全科学学报, 2017, 27(1) : 93-97.TIAN Kunyun, QI Lei. Experimental study on seepage of gas from fractured coal under stress loading and unloading conditions [J]. China Safety Science Journal, 2017, 27(1) : 93-97.
[7]邓涛. 含瓦斯煤岩卸围压实验及上解放层解放范围的研究[D].重庆: 重庆大学, 2012.
[8]黄学满. 煤结构异性对瓦斯渗透特性影响的实验研究[J]. 矿业安全与环保, 2012, 39(2): 1-3.HUANG Xueman. Experimental study on influence of structural anisot-ropy of coal upon gas permeability[J]. Mining Safety & Environmen-tal Protection, 2012, 39(2) : 1-3.
[9]邓博知, 康向涛, 李星, 等. 不同层理方向对原煤变形及渗流特性的影响[J]. 煤炭学报, 2015, 40(4): 888-894.DENG Bozhi, KANG Xiangtao, LI Xing, et al. Effect of different bedding directions on coal deformation and permeability characteristic[J]. Journal of China Coal Society, 2015, 40(4): 888-894.
[10]KOENIG R A, STUBBS P B. Interference testing of a coalbed methane reservoir[J]. Spe Unconventional Gas Technology Symposium, 1986.
[11]WANG Shugang, ELSWORTH DEREK, LIU Jishan. Permeability evolution fractured coal: the roles of fracture geometry and water-content[J]. International Journal of Coal Geology, 2011, 87(1):13-25.
[12]WU Yu, LIU Jishan, ElSWORTH Derek, et al. Evolution of coal permeability: Contribution of heterogeneous swelling processes[J]. International Journal of Coal Geology, 2011, 88(2):152-162.
[13]LI Huoyin, SHIMADA Sohei, ZHANG Ming. Anisotropy of gas permeability associated with cleat pattern in a coal seam of the Kushiro coalfield in Japan[J]. Environmental Geology, 2004, 47(1): 45-50.
[14]潘荣锟, 程远平, 董骏, 等. 不同加卸载下层理裂隙煤体的渗透特性研究[J]. 煤炭学报, 2014, 39(3) :473-477.PAN Rongkun, CHENG Yuanping, DONG Jun, et al. Research on permeability characteristics of layered natural coal under different loading and unloading[J]. Journal of China Coal Society, 2014, 39(3): 473-477.
[15]田坤云, 张瑞林. 高压水及负压加载状态下三轴应力渗流试验装置的研制[J]. 岩土力学,2014, 35(11): 3338-3343.TIAN Kunyun, ZHANG Ruilin. Research on triaxial stress seepage experiment device loaded by high pressure water and negative pressure[J]. Rock and Soil Mechanics, 2014, 35(11): 3338-3343.
[16]田坤云. 高压水载荷下煤体变形特性及瓦斯渗流规律研究[D]. 北京:中国矿业大学(北京), 2014.
[17]袁欣, 梁冰, 孙维吉, 等. 卸压煤层瓦斯抽采渗透率演化模型研究[J] . 中国安全科学学报, 2016, 26(2): 127-131.YUAN Xin, LIANG Bing, SUN Weiji, et al. Research on permeability evolution model for coal seam being drained by pressure relief[J]. China Safety Science Journal, 2016, 26(2): 127-131.
[18]潘荣锟. 载荷煤体渗透率演化特性及在卸压瓦斯抽采中的应用[D]. 徐州:中国矿业大学, 2014.

相似文献/References:

[1]贾炳,魏建平,温志辉.峰值前后多次加载下煤样声发射特征[J].中国安全生产科学技术,2016,12(4):5.[doi:10.11731/j.issn.1673-193x.2016.04.001]
 JIA Bing,WEI Jianping,WEN Zhihui.Acoustic emission characteristics of coal samples under multiple loading processes before and after the peak value[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(7):5.[doi:10.11731/j.issn.1673-193x.2016.04.001]
[2]张民波,朱红青,吝曼卿,等.加卸载下含水率对含瓦斯煤岩损伤变形的影响分析[J].中国安全生产科学技术,2017,13(5):90.[doi:10.11731/j.issn.1673-193x.2017.05.015]
 ZHANG Minbo,ZHU Hongqing,LIN Manqing,et al.Effect of moisture content on damage deformation of coal containing gas under loading and unloading conditions[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(7):90.[doi:10.11731/j.issn.1673-193x.2017.05.015]
[3]张民波,雷克江,吝曼卿,等.加轴压卸围压下含瓦斯煤岩损伤变形的能量演化机制[J].中国安全生产科学技术,2018,14(4):45.[doi:10.11731/j.issn.1673-193x.2018.04.007]
 ZHANG Minbo,LEI Kejiang,LIN Manqing,et al.Energy evolution mechanism for damage deformation of gas-containing coal rock under loading axial pressure and unloading confining pressure[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(7):45.[doi:10.11731/j.issn.1673-193x.2018.04.007]

备注/Memo

备注/Memo:
国家自然科学基金项目(51604091);河南省高等学校青年骨干教师项目(2017GGJS153)
更新日期/Last Update: 2018-08-09