|本期目录/Table of Contents|

[1]池亚娟,付建民,李宏浩,等.基于人因可靠性的间歇装置SIL分析与改进[J].中国安全生产科学技术,2018,14(3):136-143.[doi:10.11731/j.issn.1673-193x.2018.03.020]
 CHI Yajuan,FU Jianmin,LI Honghao,et al.Analysis and improvement of safety integrity level for batch equipment based on human reliability[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(3):136-143.[doi:10.11731/j.issn.1673-193x.2018.03.020]
点击复制

基于人因可靠性的间歇装置SIL分析与改进
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年3期
页码:
136-143
栏目:
职业安全卫生管理与技术
出版日期:
2018-03-31

文章信息/Info

Title:
Analysis and improvement of safety integrity level for batch equipment based on human reliability
文章编号:
1673-193X(2018)-03-0136-08
作者:
池亚娟1付建民1李宏浩1甄佳1商振东2袁磊2
(1.中国石油大学(华东) 海洋油气装备与安全技术研究中心,山东 青岛 266580; 2.东营石大胜华新能源有限公司,山东 东营 257000)
Author(s):
CHI Yajuan1 FU Jianmin1 LI Honghao1 ZHEN Jia1 SHANG Zhendong2 YUAN Lei2
(1. Center for Offshore Engineering and Safety Technology, China University of Petroleum, Qingdao Shandong 266580, China; 2. Dong Ying Shi Da Sheng Hua New Energy Corporation, Dongying Shandong 257000, China)
关键词:
安全仪表系统安全完整性等级HAZOPLOPA人因可靠性分析六氟磷酸锂
Keywords:
safety instrument system (SIS) safety integrity level (SIL) hazard and operability analysis (HAZOP) layer of protection analysis (LOPA) human reliability analysis LiPF6
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2018.03.020
文献标志码:
A
摘要:
IEC 61508和IEC 61511等标准针对连续工艺装置提出了安全仪表系统安全完整性等级评估方法。但对于间歇装置的SIL评估,受人因因素影响水平并未明确,且没有提出相应计算模型。以某六氟磷酸锂间歇生产装置典型SIS为例,采用HAZOP结合LOPA方法对其进行风险分析,在明确间歇生产装置存在人员中毒、窒息及燃烧爆炸风险的基础上,确定并验证其安全仪表系统的SIL,再依据间歇生产装置人工依赖性高,即部分安全仪表系统未接入自动联锁且需人工手动触发的特点,建立人因可靠性模型,来分析人因可靠性对安全仪表系统SIL的影响,并进行改进研究。研究结果表明:人因因素对安全仪表系统SIL有显著影响;可通过改变SIS元件冗余结构、测试策略并结合改进人因管理措施来提高SIL。
Abstract:
The assessment methods of safety integrity level (SIL) for safety instrument system (SIS) aiming at the continuous process equipments have been put forward in IEC 61508 and IEC 61511. However, for the SIL assessment on the batch equipments, the influence level of the human factors has not been identified, and the corresponding calculation model has not been proposed. Taking the typical SIS of a batch producing equipment of LiPF6 as example, the risk analysis was carried out by using the hazard and operability analysis (HAZOP) combined with the layer of protection analysis (LOPA). On the basis of determining the risk of personnel poisoning, asphyxiation, and combustion and explosion of the batch producing equipment, the SIL of SIS was determined and verified. According to the characteristic of high artificial dependence of the batch producing equipment, namely part of the SIS were not connected into the automatic interlocking and needed to be manually triggered, a model of human reliability was established to analyze the influence of human reliability on the SIL of SIS, and the improvement research was conducted. The results showed that the human factors have significant influence on SIL, and SIL can be improved by changing the redundancy structure and testing strategies of SIS components, combined with improving the human factor management measures.

参考文献/References:

[1]方来华, 吴宗之, 魏利军, 等. 安全仪表系统的开发与要求[J]. 中国安全科学学报, 2009, 19(4):159-168. FANG Laihua, WU Zongzhi, WEI Lijun, et al. Development and Requirements of Safety Instrumented System [J]. China Safety Science Journal, 2009, 19(4):159-168.
[2]全国工业过程测量和控制标准化技术委员会.电气/电子/可编程电子安全相关系统的功能安全:GB/T 20438—2006[S].北京:中国标准出版社,2007.
[3]HAVLIKOVA M, JIRGL M, BRADAC Z. Human reliability in man-machine systems[J]. Procedia Engineering, 2015, 100(1): 1207-1214.
[4]SCHONBECK M, RAUSAND M, ROUVROYE J. Human and organisational factors in the operational phase of safety instrumented systems: A new approach[J]. Safety Science, 2010, 48(3): 310-318.
[5]BEVILACQUA M, CIARAPICA F E. Human factor risk management in the process industry: A case study[J]. Reliability Engineering & System Safety, 2018, 169(1): 149-159.
[6]YANG Dongwei, LIU Hongwei. Application of THERP HCR model for valve overhaul in nuclear power plant[C]//International Conference on Materials Science, 2017: 22-28.
[7]吴克安, 任建纲. 六氟磷酸锂的发展现状与市场前景[J]. 浙江化工, 2011, 42(6):1-5. WU Ke’an, REN Jian’gang. The Current Status and Tendency of Lithium Hexafluorophosphate [J]. Zhejiang Chemical Industry Research Institute, 2011, 42(6):1-5.
[8]肖跃龙. 六氟磷酸锂的新工艺制备与表征[C]//中国功能材料及其应用学术会议. 2010:110-116.
[9]FABBRI G, MASCIOLI F M F, PASQUALI M, et al. Automotive application of lithium-ion batteries: A new generation of electrode materials[C]// IEEE International Symposium on Industrial Electronics. IEEE, 2013:1-6.
[10]付豪, 陈俊彩, 李宣丽, 等. 六氟磷酸锂的纯化[J]. 化工进展, 2013,32(11): 2675-2678. FU Hao, CHEN Juncai, LI Xuanli, et al. Purification of lithium hexafluorophosphate [J]. Chemical Industry and Engineering Process. 2013,32(11): 2675-2678.
[11]刘晓红, 荀开昺, 田明明, 等. 锂交换法制备六氟磷酸锂及表征[J]. 南昌大学学报(工科版), 2014(3):213-216. LIU Xiaohong, XUN Kaibing, TIAN Mingming, et al. Preparation of and characterization of lithium hexafluorophosphate by Li-ion exchange reaction [J]. Journal of Nanchang University (Engineering & Technology), 2014(3):213-216.
[12]张建刚, 王瑶. 电解质六氟磷酸锂制备进展及难点分析[J]. 无机盐工业, 2012, 44(6):57-60. ZHANG Jian’gang, WANG Yao. Progress in preparation of lithium hexafluorophosphate electrolyte and analysis on difficulties thereof [J]. Inorganic Chemicals Industry, 2012, 44(6):57-60.
[13]李冰心. 六氟磷酸锂产业发展面临的机遇与挑战[J]. 新材料产业, 2012(3):17-21. LI Bingxin. Opportunities and challenges for the development of Six Fluorine Lithium Phosphate industry [J]. New material industry, 2012(3):17-21.
[14]杨晓宏, 张在忠, 李军, 等. 六氟磷酸锂技术及市场分析[J]. 当代化工, 2012(9):972-973. YANG Xiaohong, ZHANG Zaizhong, LI Jun, et al. Synthetic Technology and Market Analysis of LiPF6 [J]. Contemporary ChemicalIndustry, 2012(9):972-973.
[15]RAHIMI M, RAUSAND M. Monitoring human and organizational factors influencing common-cause failures of safety-instrumented system during the operational phase[J]. Reliability Engineering & System Safety, 2013, 120(12): 10-17.
[16]WANG Feng, YANG Ou, ZHANG Rui-bo, et al. Method for assigning safety integrity level (SIL) during design of safety instrumented systems (SIS) from database[J]. Journal of Loss Prevention in the Process Industries, 2016, 44(1): 212-222.
[17]LUNDTEIGEN M A, RAUSAND M. Spurious activation of safety instrumented systems in the oil and gas industry:Basic concepts and formulas[J]. Reliability Engineering & System Safety, 2008, 93(8): 1208-1217.
[18]BAYBUTT P. Overcoming challenges in using layers of protection analysis (LOPA) to determine safety integrity levels (SILs)[J]. Journal of Loss Prevention in the Process Industries, 2017, 48(1): 32-40.
[19]张力. 概率安全评价中人因可靠性分析技术研究[D].长沙:湖南大学, 2004.

相似文献/References:

[1]姜颖.重大危险源安全与自动化监控系统[J].中国安全生产科学技术,2010,6(4):161.
 JIANG Ying.Safety and automation manitoring system for major hazard installations[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(3):161.
[2]方来华,吴宗之,康荣学,等.安全设备失效数据获取与计算[J].中国安全生产科学技术,2010,6(3):121.
 FANG Lai-hua,WU Zong-zhi,KANG Rong-xue,et al.The acquisition and calculation of failure data of safety equipment[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(3):121.
[3]方来华,吴宗之,康荣学,等.安全仪表系统的性能维护及指标值计算[J].中国安全生产科学技术,2011,7(11):46.
 FANG Lai-hua,WU Zong-zhi,KANG Rong-xue,et al.Performance maintenance and indicator value calculation of safety instrumented system[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(3):46.
[4]李娜,孙文勇,宁信道.HAZOP、LOPA和SIL方法的应用分析[J].中国安全生产科学技术,2012,8(5):107.
 LI Na,SUN Wen yong,NING Xin dao.The application of HAZOP, LOPA and SIL analytical method[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(3):107.
[5]李毅,熊亮,邓海发,等.SIL评估及HAZOP分析技术在海洋平台安全评估中的应用[J].中国安全生产科学技术,2013,9(8):119.[doi:10.11731/j.issn.1673-193x.2013.08.022]
 LI Yi,XIONG Liang,DENG Hai fa,et al.Application of SIL evaluation and HAZOP analysis technology in safety assessment of offshore platform[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(3):119.[doi:10.11731/j.issn.1673-193x.2013.08.022]
[6]周荣义,钟岸,任竟舟,等.安全系统安全完整性等级确定方法比较研究[J].中国安全生产科学技术,2014,10(3):67.[doi:10.11731/j.issn.1673-193x.2014.03.011]
 ZHOU Rong yi,ZHONG An,REN Jing zhou,et al.Comparative study on determining methods for safety integrity level of safety system[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(3):67.[doi:10.11731/j.issn.1673-193x.2014.03.011]
[7]钱钧,魏利军,李少鹏.安全仪表系统等级划分与HAZOP分析的结合应用[J].中国安全生产科学技术,2009,5(5):148.
 QIAN Jun,WEI Li jun,LI Shao peng.Combined application of safety instrumented system classification and HAZOP analysis[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(3):148.
[8]王海清,乔丹菊,冯军,等.石化装置安全仪表系统KooN表决结构的误跳车率定量分析[J].中国安全生产科学技术,2018,14(12):152.[doi:10.11731/j.issn.1673-193x.2018.12.025]
 WANG Haiqing,QIAO Danju,FENG Jun,et al.Quantitative analysis on spurious trip rate of safety instrumented system with KooN voting architectures in petrochemical plant[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(3):152.[doi:10.11731/j.issn.1673-193x.2018.12.025]
[9]夏阳光,陶刚,张礼敬.基于FFTA-LOPA的化工装置安全仪表系统SIL确定方法[J].中国安全生产科学技术,2016,12(6):142.[doi:10.11731/j.issn.1673-193x.2016.06.025]
 XIA Yangguang,TAO Gang,ZHANG Lijing.Study on determination method of SIL for safety instrumented system of chemical plant based on FFTA-LOPA[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(3):142.[doi:10.11731/j.issn.1673-193x.2016.06.025]
[10]李宏浩,付建民,李成美,等.基于Monte Carlo与Markov法参数不确定性条件下SIL评估[J].中国安全生产科学技术,2016,12(9):109.[doi:10.11731/j.issn.1673-193x.2016.09.020]
 LI Honghao,FU Jianmin,LI Chengmei,et al.SIL evaluation with parameters uncertainty based on Monte Carlo and Markov methods[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(3):109.[doi:10.11731/j.issn.1673-193x.2016.09.020]

备注/Memo

备注/Memo:
新疆油田科技委托项目(CQYC-2016-156); 青岛市民生科技计划重点支持项目(14-2-3-64-nsh)
更新日期/Last Update: 2018-04-11