|本期目录/Table of Contents|

[1]易欣,康付如,邓军,等.矿用无机固化泡沫充填材料研究及应用[J].中国安全生产科学技术,2017,13(10):136-142.[doi:10.11731/j.issn.1673-193x.2017.10.023]
 YI Xin,KANG Furu,DENG Jun,et al.Research and application on inorganic solidified foam filling material for mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(10):136-142.[doi:10.11731/j.issn.1673-193x.2017.10.023]
点击复制

矿用无机固化泡沫充填材料研究及应用
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年10期
页码:
136-142
栏目:
现代职业安全卫生管理与技术
出版日期:
2017-10-30

文章信息/Info

Title:
Research and application on inorganic solidified foam filling material for mine
文章编号:
1673-193X(2017)-10-0136-07
作者:
易欣12康付如12邓军12向崎12马砺12
(1. 西安科技大学 安全科学与工程学院,陕西 西安 710054;2. 陕西省煤火防治重点实验室,陕西 西安 710054)
Author(s):
YI Xin12 KANG Furu12 DENG Jun12 XIANG Qi12 MA Li12
(1. School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an Shaanxi 710054, China; 2. Shaanxi Key Laboratory of Prevention and Control of Coal Fire, Xi'an Shaanxi 710054, China)
关键词:
无机固化泡沫充填材料抗压强度自燃气体泄漏
Keywords:
inorganic solidified foam filling material compressive strength spontaneous combustion air leakage
分类号:
TD75+3
DOI:
10.11731/j.issn.1673-193x.2017.10.023
文献标志码:
A
摘要:
针对井下堵漏风和密闭墙构建时存在的劳动强度大,密封效果差等缺点,研制了一种无机固化泡沫充填材料,通过大量的实验研究了泡沫掺量、水灰比和胶凝剂对材料性能的影响,并对其进行了现场应用。研究结果表明:泡沫掺量的增加和水灰比的增大均能使初凝时间增加,硫铝酸盐水泥充填材料的初凝时间是普通水泥充填材料的31%~44%;抗压强度随泡沫掺量增加而明显降低,硫铝酸盐水泥为胶凝剂时的充填材料抗压强度较大;泡沫掺量为1,2,3倍时的材料密度是未添加泡沫时的40%~46%,23%~33%和18%~24%,可以显著降低劳动强度;硫铝酸盐充填材料在内部孔结构方面优于普通水泥充填材料。研究成果可用于确定最佳的无机固化泡沫充填材料配方,现场应用表明材料密封效果和抗压强度好,具有广阔的应用空间。
Abstract:
Aiming at the shortcomings of large labor intensity and poor sealing effect when sealing the air leakage and constructing the sealing wall in underground mine, an inorganic solidified foam filling material was developed. The influence of foam content, water cement ratio and gelling agent on the performance of the filling material was studied by a large number of experiments, and its field application was carried out. The results showed that with the increase of both foam content and water cement ratio, the initial setting time increased, and the initial setting time of sulphoaluminate cement filling material was 31%-44% of ordinary cement filling material. The compressive strength decreased obviously with the increase of foam content, and the compressive strength of filling material when taking sulphoaluminate cement as the gelling agent was larger. When the foam content was 1, 2 and 3 times, the density of the material was 40%-46%, 23%-33% and 18%-24% of that without adding foam, which can significantly reduce the labor intensity. The internal pore structure of sulphoaluminate filling material was superior to the ordinary cement filling material. The results can be used to determine the optimal formula of inorganic solidified foam filling material. The field application showed that the sealing effect and compressive strength of the material were good, and the material has a wide application space.

参考文献/References:

[1]彭本信. 煤矿井下可塑性胶泥堵漏风防火[J]. 煤炭科学技术,1986(6): 50-53. PENG Benxin. Plasticity cement mud air leakage prevention in Coal Mine[J].Coal Science and Technology, 1986(6): 50-53.
[2]吴士坤,吕学强,张光超,等. 密闭墙漏风治理研究[J]. 山东煤炭科技, 2008(4): 117-118. WU Shikun, LYU Xueqiang, ZHANG Guangchao, et al. Study on air leakage control of airtight wall[J].Shandong Coal Science and Technology, 2008(4): 117-118.
[3]王维,戴广龙,聂士斌.抑制煤炭自然发火注浆堵漏材料的性能研究[J]. 中国安全生产科学技术,2014,10 (11): 107-112. WANG Wei,DAI Guanglong,NIE Shibin.Research on performance of grouting plugging material for inhibition of coal spontaneous combustion[J].Journal of Safety Science and Technology,2014,10(11):107-112.
[4]Qin B T, Lu Y. Experimental research on inorganic solidified foam for sealing air leakage in coal mines[J]. International Journal of Mining Science and Technology, 2013, 23(1): 151-155.
[5]金永飞,李海涛,李波. 大掺量粉煤灰浆液固化密闭充填封堵漏风技术研究[J]. 煤炭技术, 2014(11): 292-294. JIN Yongfei, LI Haitao, LI Bo. Study of large amount of fly ash slurry curing sealed filling plugging leakage technology[J]. Coal Technology, 2014(11): 292-294.
[6]W. Bichler, L. Simon, Phenolic resin foam for the sealing of loose hanging walls of mines[J]. Fuel and Energy Abstracts, 1996, 37(4): 251.
[7]Uematsu Y, Miyamoto Y, Gavansky E. Effect of Porosity on the Wind Loads on a Hyperbolic Paraboloid Canopy Roof[J]. Civil engineering and construction, 2015, 9(6): 715-726.
[8]盖广清,张海波,马小秋. 掺粉煤灰的陶粒泡沫混凝土承重保温砌块研究[J]. 建筑砌块与砌块建筑, 2007(1): 17-18. GAI Guangqing, ZHANG Haibo, MA Xiaoqiu. Study on ceramsite foamed concrete bearing thermal insulation block mixed with fly ash [J].Building Block & Block Construction, 2007(1): 17-18.
[9]Tosun-Feleko Lu K. The effect of C3A content on sulfate durability of Portland limestone cement mortars[J]. Construction and Building Materials, 2012(36): 437-447.
[10]王胜,陈礼仪,汪彦枢,等. 密闭条件下硅酸盐水泥凝固特性[J]. 成都理工大学学报(自然科学版), 2014(2): 237-242. WANG Sheng, CHEN Liyi, WANG Yanshu, et al. Solidification characteristics of portland cement under confined conditions[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2014(2):237-242.
[11]穆元冬. 减水剂对不同铝酸盐水泥水化凝结行为的影响[D]. 郑州:郑州大学, 2015. MU Yuandong. Effect of dispersants on hydration and setting behavior of different calcium aluminate cements[D]. Zhengzhou University, 2015.
[12]李茂辉,杨志强,王有团,等. 粉煤灰复合胶凝材料充填体强度与水化机理研究[J]. 中国矿业大学学报, 2015(4): 650-655. LI Maohui, YANG Zhiqiang,WANG Youtuan, et al. Experiment study of compressive strength and mechanical property of filling body for fly ash composite cementitious materials[J]. Journal of China University of Mining & Technology, 2015(4): 650-655.
[13]王小萍. 木质素磺酸盐对硅酸盐水泥凝结时间的影响及其作用机理研究[D]. 广州:华南理工大学, 2012.
[14]Zhang Z, Qian J. Effect of protogenetic anhydrite on the hydration of cement under different curing temperature[J]. Construction and Building Materials, 2017(142): 417-422.
[15]李高明. 调凝剂对水泥水化历程的调控及作用机理研究[D]. 武汉:武汉理工大学, 2011.
[16]李林香,谢永江,冯仲伟,等. 水泥水化机理及其研究方法[J]. 混凝土, 2011(6): 76-80. LI Linxiang, XIE Yongjiang, FENG Zhongwei, et al. Cement hydration mechanism and research methods[J]. Concrete, 2011(6): 76-80.
[17]黄天勇. 微量化学外加剂对硅酸盐水泥强度的影响及作用机理[D]. 北京:中国矿业大学(北京), 2014.
[18]贺国庆, 洪宝宁, 刘鑫,等. 基于气泡率的气泡混凝土密度和强度特性分析[J]. 水利与建筑工程学报, 2014(2):67-70. HE Guoqing, HONG Baoning, LIU Xin, et al. Analysis on bubble concrete's density and strength characteristics based on bubble rate[J]. Journal of Water Resources and Architectural Engineering, 2014(2):67-70.
[19]杨瑞海,陆文雄. 复合胶凝材料水泥体系水化机理的研究[J]. 新世纪水泥导报, 2007(4): 10-13. YANG Ruihai, LU Wenxiong. Study on hydration mechanism of composite cementitious material cement system [J]. Cement Guide for New EPoch, 2007(4): 10-13.

相似文献/References:

[1]史俊伟,孟祥瑞,董羽,等.基于地表沉陷控制的膏体充填材料的性能优化研究[J].中国安全生产科学技术,2017,13(10):143.[doi:10.11731/j.issn.1673-193x.2017.10.024]
 SHI Junwei,MENG Xiangrui,DONG Yu,et al.Study on performance optimization of paste filling material for controlling surface subsidence[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(10):143.[doi:10.11731/j.issn.1673-193x.2017.10.024]
[2]Phan Van Viet,王东.热电厂炉渣作为煤矿膏体充填材料的配比试验研究[J].中国安全生产科学技术,2018,14(1):49.[doi:10.11731/j.issn.1673-193x.2018.01.008]
 PHAN Van Viet,WANG Dong.Experimental study on proportioning of bottom ash in thermal power plant as paste filling material of coal mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(10):49.[doi:10.11731/j.issn.1673-193x.2018.01.008]

备注/Memo

备注/Memo:
国家自然科学基金重点项目(51134019);国家自然科学基金项目(51674191,51774232);陕西省自然科学基金项目(2016JM5016)
更新日期/Last Update: 2017-11-03