|本期目录/Table of Contents|

[1]乔彤,章光,胡少华,等.脆性岩石微裂纹压密段本构模型研究[J].中国安全生产科学技术,2017,13(10):128-135.[doi:10.11731/j.issn.1673-193x.2017.10.022]
 QIAO Tong,ZHANG Guang,HU Shaohua,et al.Research on constitutive model of microcrack compaction section in brittle rock[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(10):128-135.[doi:10.11731/j.issn.1673-193x.2017.10.022]
点击复制

脆性岩石微裂纹压密段本构模型研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年10期
页码:
128-135
栏目:
现代职业安全卫生管理与技术
出版日期:
2017-10-30

文章信息/Info

Title:
Research on constitutive model of microcrack compaction section in brittle rock
文章编号:
1673-193X(2017)-10-0128-08
作者:
乔彤12章光1胡少华13赵顺利4
(1. 武汉理工大学 资源与环境工程学院,湖北 武汉 430070;2. 安全预警与应急联动技术湖北省协同创新中心,湖北 武汉 430070;3. 武汉大学 水资源与水电工程科学国家重点试验室,湖北 武汉 430072;4. 黄河勘测规划设计有限公司,河南 郑州 450003)
Author(s):
QIAO Tong12 ZHANG Guang1 HU Shaohua13 ZHAO Shunli4
(1. School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan Hubei 430070, China; 2. Hubei Collaborative Innovation Center for Early Warning and Emergency Response Technology, Wuhan Hubei 430070, China; 3. State Key Laborat
关键词:
脆性岩石压密段本构模型热-力耦合
Keywords:
brittle rock compaction section constitutive model thermal-mechanical coupling
分类号:
TU45
DOI:
10.11731/j.issn.1673-193x.2017.10.022
文献标志码:
A
摘要:
为准确掌握脆性岩石在荷载作用下的应力-应变关系,从岩石单裂隙出发,引入自然应变的概念,建立了物理意义明确的脆性岩石微裂纹压密段本构模型,并将其简化后与线弹性阶段的本构模型进行统一。通过热-力耦合室内试验确定了模型参数,试验结果验证表明:模型能够描述不同热处理温度、不同围压下花岗岩的压密段、线弹性段试验结果,对于脆性岩石的高温劣化性和围压对压密段的抑制作用也有很好的呈现,对深入掌握脆性岩石的强度规律具有一定的指导意义。
Abstract:
In order to accurately grasp the stress-strain relationship of brittle rock under load, the concept of natural strain was introduced from the single fracture of rock, and a constitutive model of microcrack compaction section in brittle rock with the clear physical meaning was established. Furthermore, the model was simplified and unified with the constitutive model of linear elastic stage. The model parameters were determined by the thermal-mechanical coupling tests in laboratory. The results showed that the model can well describe the test results of the compression section and the linear elastic section for granite under different heat treatment temperature and confining pressure, and can also well present the high temperature degradation of brittle rock and the inhibition effect of confining pressure on the compaction section. Therefore, this model has a certain guiding significance for the in-depth understanding on the strength laws of brittle rock.

参考文献/References:

[1]Eberhart E, Stead D, Stimpson B, et al. Identifying crack initiation and propagation thresholds in brittle rock[J]. Canadian Geotechnical Journal, 1998, 35(2):222-233.
[2]Brace W F, Bombolakis E G. A note on brittle crack growth in compression [J]. Journal of Geophysical Research, 1963,68(12): 3709-3713.
[3]Lu Y L, Elsworth D, Wang L G. Microcrack-based coupled damage and flow modeling of fracturing evolution in permeable brittle rocks[J]. Computers and Geotechnics, 2013, 49:226-244.
[4]周小平, 张永兴. 卸载岩体本构理论及其应用[M]. 北京:科学出版社, 2007:28-89.
[5]Liu H.H, Doughty C, Bodvarsson G S. An active fracture model for unsaturated flow and transport in fractured rocks[J]. Water Resour. Res, 1998, 34(10), 2633-2646.
[6]袁小清,刘红岩,刘京平. 基于宏细观损伤耦合的非贯通裂隙岩体本构模型[J]. 岩土力学, 2015, 36(10): 2804-2814. YUAN Xiaoqing, LIU Hongyan, LIU Jingping. Constitutive model of rock mass with non-persistent joints based on coupling macroscopic and mesoscopic damages[J]. Rock and Soil Mechanics, 2015, 36(10):2804-2814.
[7]朱其志, 刘海旭, 王伟, 等.北山花岗岩细观损伤力学本构模型研究[J].岩石力学与工程学报, 2015, 34(3): 433-439. ZHU Qizhi, LIU Haixu, WANG Wei. A Micromechanical Constitutive Damage Model for Beishan Granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 433-439.
[8]刘红岩, 王新生, 张力民, 等. 非贯通节理岩体单轴压缩动态损伤本构模型[J]. 岩土工程学报, 2016, 38(3): 426-436. LIU Hongyan, WANG Xinsheng, ZHANG Limin, et al. A dynamic damage constitutive model for rock mass with non-persistent joints under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 426-436.
[9]朱维申, 赵成龙, 周浩, 等. 当前岩石力学研究中若干关键问题的思考与认识[J]. 岩石力学与工程学报, 2015, 34(4): 649-658. ZHU Weishen, ZHAO Chenglong, ZHOU Hao, et al. Discussion on several key issues in current rock mechanics[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 649-658.
[10]陈益峰, 胡冉, 周创兵, 等. 热-水-力耦合作用下结晶岩渗透特性演化模型[J]. 岩石力学与工程学报, 2013, 32(11): 2185-2195. CHEN Yifeng, HU Ran, ZHOU Chuangbing, et al. A permeability evolution model for crystalline rocks subjected to coupled thermo-hydro-mechanical loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11): 2185-2195.
[11]荣冠, 黄凯, 周创兵, 等. 岩石节理法向加载非线性变形本构模型研究[J]. 中国科学: 技术科学, 2012, 42(4): 402-414. RONG Guan, HUANG Kai, ZHOU Chuangbing, et al. A new constitutive law for the nonlinear normal deformation of rock joints under normal load[J]. Science China Press, 2012, 42(4): 402-414.
[12]彭俊, 荣冠, 周创兵, 等. 岩石裂纹闭合效应及其定量模型研究[J]. 岩土力学, 2016, 37(1): 126-132. PENG Jun, RONG Guan, ZHOU Chuangbing, et al. A study of crack closure effect of rocks and its quantitative model[J]. Rock and Soil Mechanics, 2016, 37(1): 126-132.
[13]Liu H H, Rutqvist J, Berryman J G. On the relationship between stress and elastic strain for porous and fractured rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 289-296.
[14]Freed A D. Natural strain[J]. Journal of Engineering Materials and Technology, 1995, 117(4): 379-385.
[15]Martin C D, Chandler N A. The progressive fracture of Lac Dubonnet granite[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1994, 31(6), 643-659.
[16]彭俊, 蔡明, 荣冠, 等. 裂纹闭合应力及其岩石微裂纹损伤评价[J]. 岩石力学与工程学报, 2015, 34(6): 1091-1100. PENG Jun, CAI Ming, RONG Guan, et al. Stresses for crack closure and its application to assessing stress-induced microcrack damage[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1091-1100.

相似文献/References:

备注/Memo

备注/Memo:
国家“十三五”重点研发计划重点专项项目(2016YFC0802509);国家自然科学基金青年基金项目(51609184);金属矿山安全与健康国家重点实验室开放基金项目(2016-JSKSSYS-01)
更新日期/Last Update: 2017-11-03