|本期目录/Table of Contents|

[1]袁巍华,吴玉国,王国付,等.水毁灾害中埋地管道稳定性研究[J].中国安全生产科学技术,2017,13(9):90-95.[doi:10.11731/j.issn.1673-193x.2017.09.014]
 YUAN Weihua,WU Yuguo,WANG Guofu,et al.Study on stability of buried pipeline in washout disaster[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(9):90-95.[doi:10.11731/j.issn.1673-193x.2017.09.014]
点击复制

水毁灾害中埋地管道稳定性研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年9期
页码:
90-95
栏目:
现代职业安全卫生管理与技术
出版日期:
2017-09-30

文章信息/Info

Title:
Study on stability of buried pipeline in washout disaster
文章编号:
1673-193X(2017)-09-0090-06
作者:
袁巍华1吴玉国2王国付2喻光安3
(1.辽宁石油化工大学 研究生学院,辽宁 抚顺 113001;2.辽宁石油化工大学 石油天然气工程学院,辽宁 抚顺 113001;3.武汉理工大学 材料科学与工程学院,湖北 武汉 430070)
Author(s):
YUAN Weihua1WU Yuguo2WANG Guofu2YU Guang'an3
(1. Graduate College, Liaoning Shihua University, Fushun Liaoning 113001, China; 2. College of Petroleum Engineering, Liaoning Shihua University, Fushun Liaoning 113001, China; 3. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan Hubei 430070, China)
关键词:
水毁灾害埋地管道有限元屈曲特征值分析
Keywords:
washout disaster buried pipeline finite element buckling eigenvalue analysis
分类号:
TE937
DOI:
10.11731/j.issn.1673-193x.2017.09.014
文献标志码:
A
摘要:
水毁灾害是长输油气埋地管道灾害中造成经济损失最严重、对环境危害最深远的自然灾害之一。为了分析埋地管道在水毁灾害中的稳定性,探讨了埋地管道在水毁灾害中的载荷分布情况;采用特征值屈曲理论,分析了埋地管道在水毁灾害中悬跨和漂浮2种主要形式下,不同管道外径和管道壁厚对埋地管道在水毁灾害中稳定性的影响,计算得到特定条件下埋地管道水毁的极限长度;建立了埋地管道在水毁灾害中的有限元模型。结果表明:管道在水毁灾害悬跨和漂浮情况下极限长度和屈曲位置不同,随着管道壁厚的增加,埋地管道在水毁灾害中的稳定性近似呈缓慢的线性增长;增大管道外径能够有效降低埋地管道在水毁灾害中的位移,并显著提高管道在水毁灾害中的抗屈曲能力。
Abstract:
The washout disaster is one of the natural disasters which cause the most serious economic loss and the most serious harm to the environment for the environmental disasters of long distance oil & gas buried pipelines. To analyze the stability of buried pipeline in the washout disaster, the load distribution of the buried pipeline in the washout disaster was discussed. By using the eigenvalue buckling theory, the influence of different pipeline external diameter and wall thickness on the stability of buried pipeline with two main forms of suspended spanning and floating in the washout disaster was analyzed. The limit length of washout for buried pipeline under specified conditions was calculated, and a finite element model of the buried pipeline in the washout disaster was established. The results showed that the limit lengths and the buckling positions of pipeline under the conditions of suspended spanning and floating in the washout disaster were different. The stability of buried pipeline in the washout disaster approximatively presented a slowly linear growth with the increase of wall thickness. Increasing the external diameter could effectively reduce the displacement and significantly improve the resistance to buckling of the buried pipeline in the washout disaster.

参考文献/References:

[1]马延霞, 吴锦强, 唐愚, 等. 成品油管道的极限悬跨长度研究[J]. 西南石油大学学报(自然科学版), 2012,34(4): 165-173. MA Yanxia, WU Jinqiang, TANG Yu, et al. Maximum suspended length of producton pipeline[J]. Journal of Southwest Petroleum University(Science & Technology Editon). 2012, 34(4): 165-173.
[2]中国石油天然气集团公司. 输气管道环境及地质灾害风险评估方法:Q/SY 1265—2010[S]. 北京:石油工业出版社,2010:7.
[3]张力佳, 王鸿, 郭军, 等. 兰成管道石亭江穿越管段水毁事故原因[J]. 油气储运, 2015, 34(12): 1351-1354. ZHANG Lijia, WANG Hong,GUO Jun, et al. Causes for flood damage in Shitingjiang River crossing section of Lanzhou-Chengdou Pipeline[J]. Oil & Gas Storage and Transportation, 2015, 34(12): 1351-1354.
[4]李亮亮, 邓清禄, 余伟, 等. 长输油气管道河沟段水毁危害特征与防护结构[J]. 油气储运, 2012, 31(12): 945-949. LI Liangliang, DENG Qinglu, YU Wei, et al. Damage characteristics and protection structure of washout in long distance transport oil and gas pipeline[J]. Oil & Gas Storage and Transportation, 2012, 31(12): 945-949.
[5]李海川, 吴宏. 靖边-延水关管段汛期水毁现象的防治措施[J]. 油气储运, 2005, 24(8): 53-54. LI Haichuan, WU Hong. Prevention measures of washout in jingbian-yanshuiguan pipeline section[J]. Oil & Gas Storage and Transportation, 2005, 24(8): 53-54.
[6]Song B, Cheng J J R, Chan D H, et al. Numerical simulation of stress relief of buried pipeline at Pembina river crossing [C]. Proceedings of the ASME International Pipeline Conference 2006, New York, United States, 2007.
[7]张乐天,刘扬,魏立新,等.洪水冲击管道的模拟分析[J].管道技术与设备,2006(2):11-12, 17. ZHANG Letian, LIU Yang, WEI Lixin,et al. Simulation and analysis of impacted pipe[J]. Pipeling Technique and Equipment, 2006(2): 11-12,17.
[8]FURNES G K, BERNTSEN J. On the response of a free span pipeline subjected to ocean currents[J]. Ocean Engineering, 2003, 30(12): 1553-1577.
[9]王晓霖, 帅健. 洪水中漂浮管道的应力分析[J]. 工程力学, 2011,28(2): 212-216. WANG Xiaolin, SHUAI Jian. Stress analysis of pipeline floating in flood[J]. Engineering Mechanics, 2011,28(2): 212-216.
[10]LI Sijia, DUAN Qingquan, ZHANG Hong, et al. Failure analysis of the floating pipeline with defect under flooding load[J]. Engineering Failure Analysis, 2017, 77: 65-75.
[11]康习锋,张宏,罗茜,等.初始几何缺陷对埋地管道屈曲临界载荷影响研究[J].中国安全生产科学技术,2015,11(10):23-27. KANG Xifeng, ZHANG Hong, LUO Xi, et al. Influence of initial geometric imperfection on critical load of buckling in buried pipeline[J]. Journal of Safety Science and Technology. 2015, 11(10): 23-27.
[12]谭东杰, 施宁, 李亮亮, 等. 洪水冲击流动管道基于DQM的临界长度研究[J]. 西南石油大学学报(自然科学版), 2013,35(4): 173-179. TAN Dongjie, SHI Ning, LI Liangliang, et al. Research on critical length of flood impacting pipeline within internal flow based on different quadrature method[J]. Journal of Southwest Petroleum University(Science & Technology Editon). 2012, 34(4): 173-179.
[13]Boccotti P, Arena F, Fiamma V, et al. Two small-scale field experiments on the effectiveness of Morison’s equation[J]. Ocean Engineering, 2013, 57(1): 141-149.
[14]帅健, 于桂杰. 管道及储罐强度设计[M]. 北京: 石油工业出版社, 2015.
[15]TIAN Yong, LIU Hao, JIANG Xue, et al. Analysis of stress and deformation of a positive buried pipe using the improved spangler model[J]. Soils and Foundations, 2015, 55(3): 485-492.

相似文献/References:

[1]姚志强.埋地原油管道油品泄漏扩散三维数值模拟[J].中国安全生产科学技术,2015,11(6):132.[doi:10.11731/j.issn.1673-193x.2015.06.021]
 YAO Zhi-qiang.Three-dimensional numerical simulation on leakage and diffusion of oil in buried crude oil pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(9):132.[doi:10.11731/j.issn.1673-193x.2015.06.021]
[2]韩传军,张瀚,张杰,等.地表载荷对硬岩区埋地管道应力应变影响分析[J].中国安全生产科学技术,2015,11(7):23.[doi:10.11731/j.issn.1673-193x.2015.07.004]
 HAN Chuan-jun,ZHANG Han,ZHANG Jie,et al.Analysis on influence of surface load to stress-strain characteristics of pipeline buried in hard rock region[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(9):23.[doi:10.11731/j.issn.1673-193x.2015.07.004]
[3]张一楠,马贵阳,周玮,等.沉降土体对管道跨越结构应力影响的分析[J].中国安全生产科学技术,2015,11(8):106.[doi:10.11731/j.issn.1673-193x.2015.08.018]
 ZHANG Yi-nan,MA Gui-yang,ZHOU Wei,et al.Analysis on influence to stress of pipeline with crossover structure by soil mass settlement[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(9):106.[doi:10.11731/j.issn.1673-193x.2015.08.018]
[4]康习锋,张宏,罗茜,等.初始几何缺陷对埋地管道屈曲临界载荷影响研究[J].中国安全生产科学技术,2015,11(10):23.[doi:10.11731/j.issn.1673-193x.2015.10.004]
 KANG Xi-feng,ZHANG Hong,LUO Xi,et al.Influence of initial geometric imperfection on critical load of buckling in buried pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(9):23.[doi:10.11731/j.issn.1673-193x.2015.10.004]
[5]韩传军,张瀚,张杰,等.地表夯击载荷作用下埋地管道力学分析[J].中国安全生产科学技术,2015,11(10):61.[doi:10.11731/j.issn.1673-193x.2015.10.011]
 HAN Chuan-jun,ZHANG Han,ZHANG Jie,et al.Mechanical analysis on buried pipeline under effect of surface tamping impact load[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(9):61.[doi:10.11731/j.issn.1673-193x.2015.10.011]
[6]黄雪驰,马贵阳,王锡钰,等.基于稳定风场的埋地天然气管道泄漏数值模拟[J].中国安全生产科学技术,2016,12(1):96.[doi:10.11731/j.issn.1673-193x.2016.01.018]
 HUANG Xuechi,MA Guiyang,WANG Xiyu,et al.Numerical simulation on leakage of buried gas pipeline based on stable wind field[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(9):96.[doi:10.11731/j.issn.1673-193x.2016.01.018]
[7]李长俊,马树锋,季楚凌,等.地面堆载对埋地管道的安全影响分析[J].中国安全生产科学技术,2015,11(11):23.[doi:10.11731/j.issn.1673-193x.2015.11.004]
 LI Chang-jun,MA Shu-feng,JI Chu-ling,et al.Study on influence to safety of buried pipelines caused by ground loads[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(9):23.[doi:10.11731/j.issn.1673-193x.2015.11.004]
[8]张铄,吴明,牛冉,等.深层圆弧形滑坡作用下长输埋地输气管道响应分析[J].中国安全生产科学技术,2015,11(11):29.[doi:10.11731/j.issn.1673-193x.2015.11.005]
 ZHANG Shuo,WU Ming,NIU Ran,et al.Analysis on response of long distance buried gas pipeline impacted by deep cir-cular arc landslide[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(9):29.[doi:10.11731/j.issn.1673-193x.2015.11.005]
[9]蒋永清,任喆,孙超,等.埋地管道泄漏天然气在分层填筑土壤扩散数值模拟研究[J].中国安全生产科学技术,2016,12(6):105.[doi:10.11731/j.issn.1673-193x.2016.06.019]
 JIANG Yongqing,REN Zhe,SUN Chao,et al.Numerical simulation research on diffusion of natural gasleaking from buried pipeline in layered filling soil[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(9):105.[doi:10.11731/j.issn.1673-193x.2016.06.019]
[10]刘朝峰,等.城市埋地管道占压风险评估实用方法研究[J].中国安全生产科学技术,2017,13(2):188.[doi:10.11731/j.issn.1673-193x.2017.02.033]
 LIU Chaofeng,JIANG Liben,et al.Research on practical method for occupying risk assessment of urban buried pipelines[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(9):188.[doi:10.11731/j.issn.1673-193x.2017.02.033]

备注/Memo

备注/Memo:
辽宁省教育厅科学研究项目(L2015306)
更新日期/Last Update: 2017-10-12