|本期目录/Table of Contents|

[1]徐薇,刘波,周予启.超大直径扩底嵌岩桩模型试验研究[J].中国安全生产科学技术,2017,13(7):117-123.[doi:10.11731/j.issn.1673-193x.2017.07.019]
 XU Wei,LIU Bo,ZHOU Yuqi.Study on model test of super large diameter rock socketed pile with belled shaft[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(7):117-123.[doi:10.11731/j.issn.1673-193x.2017.07.019]
点击复制

超大直径扩底嵌岩桩模型试验研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年7期
页码:
117-123
栏目:
职业安全卫生管理与技术
出版日期:
2017-07-31

文章信息/Info

Title:
Study on model test of super large diameter rock socketed pile with belled shaft
文章编号:
1673-193X(2017)-07-0117-07
作者:
徐薇1刘波12周予启3
(1. 中国矿业大学(北京) 力学与建筑工程学院,北京 100083;2. 深部岩土力学与地下工程国家重点 实验室,北京 100083;3. 中建一局集团建设发展有限公司,北京 100102)
Author(s):
XU Wei1 LIU Bo12 ZHOU Yuqi3
(1. School of Mechanics & Civil Engineering, China University of Mining & Technology- Beijing, Beijing 100083, China; 2. State Key Laboratory for Geomechanics and Deep Underground Engineering, Beijing 100083, China; 3. China Construction First Division Group Construction & Development Co., Ltd., Beijing 100102, China)
关键词:
超大直径嵌岩桩模型试验承载力沉降
Keywords:
super large diameter rock socketed pile model test bearing capacity settlement
分类号:
X947
DOI:
10.11731/j.issn.1673-193x.2017.07.019
文献标志码:
A
摘要:
为了弥补因现有技术无法对深圳平安大厦进行现场试桩分析的不足,研究超大直径桩的桩身承载及沉降规律,采用缩尺模型试验的方法对其进行了研究。研究结果表明:超大直径嵌岩桩桩身最大承载力远高于规范计算得到的竖向抗压承载力特征值,其上部荷载主要由桩端承担,对桩进行扩底处理后桩端承载所占总荷载比例较等直径桩更大,且等直径嵌岩桩的侧摩阻力比扩底嵌岩桩的侧摩阻力的发挥更显著。桩身在中风化—微风化花岗岩段的侧摩阻力在设计中均不应忽略。现场实测结果对比验证了模型试验结果的合理性。
Abstract:
To make up the shortage that the field pile test analysis can't be conducted on Shenzhen Pingan Financial Center based on the current technologies, the load-bearing and settlement characteristics of the super large diameter pile were studied by using the method of reduced scale model test. The results showed that the maximum bearing capacity of super large diameter rock socketed pile was much higher than the characteristic value of vertical compressive bearing capacity calculated by the code. The upper load was mainly born by the pile end, and the proportion of load-bearing by the pile end in the total load-bearing after the belled shaft treatment on the pile was larger than that of equal-diameter pile. The side friction of equal-diameter rock socketed pile played more obvious than that of rock socketed pile with belled shaft. The side friction of piles in the moderately weathered granite to slightly weathered granite sections should not be ignored in the design. The field measurement results comparatively verified the rationality of the model test results.

参考文献/References:

[1]王垚, 冯超. 地铁车站深基坑围护桩优化及其数值分析[J]. 中国安全生产科学技术, 2013, 9(2): 54-58. WANG Yao, FENG Chao. Numerical analysis and optimization on supporting piles in deep foundation fit of metro station [J]. Journal of Safety Science and Technology, 2013, 9(2): 54-58.
[2]张智宇, 黄永辉, 凡春礼. 复杂环境下挖孔桩控制爆破的安全实施[J]. 中国安全生产科学技术, 2015, 11(3): 118-122. ZHANG Zhiyong, HUANG Yonghui, FAN Chunli. Safety implementation of controlled blasting in excavation of dig-hole pile under complex environment [J]. Journal of Safety Science and Technology, 2015, 11(3): 118-122.
[3]卫建军, 孙利亚. 双排桩支护结构的应用研究[J]. 中国安全生产科学技术, 2011, 7(7): 155-158. WEI Jianjun, SUN Liya. Application research of double-row piles retaining structure [J]. Journal of Safety Science and Technology, 2011, 7(7): 155-158.
[4]中国建筑科学研究院. 建筑桩基技术规范:JGJ 94-2008[S]. 北京: 中国建筑工业出版社, 2008.
[5]中交第一公路工程局有限公司. 公路桥涵施工技术规范:JTG/T F50-2011[S]. 北京: 人民交通出版社, 2011.
[6]梁鑫, 程谦恭, 陈建明, 等. 采空区上方高速铁路桥梁群桩基础模型试验研究[J]. 岩土力学, 2015, 36(7): 1865-1876. LIANG Xin, CHENG Qiangong, CHEN Jianming, et al. Model test on pile group foundation of a high-speed railway bridge above a goaf [J]. Rock and Soil Mechanics, 2015, 36(7): 1865-1876.
[7]杨超, 江浩, 岳健, 等. 钙质砂中桩基承载性状的模型试验研究[J]. 长江科学院院报, 2017, 34(1): 87-90. YANG Chao, JIANG Hao, YUE Jian, et al. Model test on bearing behaviors of single pile in calcareous sand [J]. Journal of Yangtze River Scientific Research Institute, 2017, 34 (1): 87-90.
[8]韩伯鲤, 陈霞龄, 宋一乐, 等. 岩体相似材料的研究[J]. 武汉水利电力大学学报, 1997, 30(2): 6-9. HAN boli, CHEN Xialing, SONG Yile, et al. Research on similar material of rockmass [J]. Journal of Wuhan University of Hydraulic and Electric Engineering. 1997, 30(2): 6-9.
[9]付志亮, 牛学良, 王素华, 等. 相似材料模拟试验定量化研究[J]. 固体力学学报, 2006, 27(S): 169-173. FU Zhiliang, NIU Xueliang, WANG Suhua, et al. Quantitative study on equivalent materials testing [J]. Acta Mechanica Solida Sinica, 2006, 27(S): 169-173.
[10]崔广心. 相似理论与模型试验[M]. 徐州: 中国矿业大学出版社, 1989.
[11]徐挺. 相似理论与模型试验[M]. 北京: 中国农业机械出版社, 1982.
[12]林韵梅. 实验岩石力学-模拟研究[M]. 北京: 煤炭工业出版社, 1984.
[13]Crapps D., Schmertmann J. Compression top load reaching shaft bottom-theory vs. tests [J]. Deep Foundations, 2002, 1533-1550.
[14]U.S. Department of Transportation Federal Highway Administration. AASHTO LRFD Bridge Design Specification. Drilled shafts: Construction Procedures and LRFD Design Methods [S]. Publication No.FHWA-NHI-10-016, 2007.
[15]中国建筑科学研究院. 建筑地基基础设计规范:GB 50007-2011[S]. 北京: 中国建筑工业出版社, 2011.

相似文献/References:

[1]张登春,章照宏,袁江雅,等.公路桥梁发热电缆除冰系统试验研究[J].中国安全生产科学技术,2015,11(11):90.[doi:10.11731/j.issn.1673-193x.2015.11.015]
 ZHANG Deng-chun,ZHANG Zhao-hong,YUAN Jiang-ya,et al.Experimental research on deicing system by heating cables for highway bridges[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(7):90.[doi:10.11731/j.issn.1673-193x.2015.11.015]
[2]敬小非,周筱,赵一姝,等.筋带密度对尾矿坝漫顶破坏规律影响研究[J].中国安全生产科学技术,2016,12(8):68.[doi:10.11731/j.issn.1673-193x.2016.08.011]
 JING Xiaofei,ZHOU Xiao,ZHAO Yishu,et al.Study on influence of reinforcement density on overtopping failure of tailings dam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(7):68.[doi:10.11731/j.issn.1673-193x.2016.08.011]
[3]张登春,章照宏,袁江雅,等.热力管加热桥面抗冰融冰试验研究[J].中国安全生产科学技术,2017,13(12):179.[doi:10.11731/j.issn.1673-193x.2017.12.028]
 ZHANG Dengchun,ZHANG Zhaohong,YUAN Jiangya,et al.Experimental research on anti icing and ice melting of bridge deck by heat pipe heating[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(7):179.[doi:10.11731/j.issn.1673-193x.2017.12.028]
[4]许志发,王光进,赵怀刚,等.不同下游河道坡降尾矿库溃坝模型试验及下游影响研究[J].中国安全生产科学技术,2018,14(8):134.[doi:10.11731/j.issn.1673-193x.2018.08.022]
 XU Zhifa,WANG Guangjin,ZHAO Huaigang,et al.Study on dambreak model tests and downstream influence of tailings pond with different downstream river slopes[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(7):134.[doi:10.11731/j.issn.1673-193x.2018.08.022]
[5]陈雪峰,赵孝学,汪海波,等.节理充填岩体爆炸应力波传播规律模型试验与应用研究[J].中国安全生产科学技术,2018,14(12):130.[doi:10.11731/j.issn.1673-193x.2018.12.021]
 CHEN Xuefeng,ZHAO Xiaoxue,WANG Haibo,et al.Model tests and application research on propagation laws of blasting stress wave in jointed and filled rock mass[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(7):130.[doi:10.11731/j.issn.1673-193x.2018.12.021]
[6]吴奇峰,汪磊,周骏,等.加载条件下原水管道受力特征模型试验研究[J].中国安全生产科学技术,2019,15(4):174.[doi:10.11731/j.issn.1673-193x.2019.04.027]
 WU Qifeng,WANG Lei,ZHOU Jun,et al.Experimental study on stress characteristics model of raw water pipeline under loading conditions[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(7):174.[doi:10.11731/j.issn.1673-193x.2019.04.027]
[7]吴奇峰,汪磊,孙鹏飞,等.加载条件下多尺寸原水管道受力特征模型试验[J].中国安全生产科学技术,2019,15(10):57.[doi:10.11731/j.issn.1673-193x.2019.10.009]
 WU Qifeng,WANG Lei,SUN Pengfei,et al.Modeling tests on mechanics characteristics of multisize raw water pipeline under loading condition[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(7):57.[doi:10.11731/j.issn.1673-193x.2019.10.009]
[8]孙鹏飞,汪磊,吴奇峰,等.考虑非均匀地基原水管道受力特征模型试验研究[J].中国安全生产科学技术,2019,15(12):59.[doi:10.11731/j.issn.1673-193x.2019.12.010]
 SUN Pengfei,WANG Lei,WU Qifeng,et al.Model test study on mechanical characteristics of raw water pipeline considering nonuniform foundation[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(7):59.[doi:10.11731/j.issn.1673-193x.2019.12.010]
[9]马守龙,宗琦,张守旸,等.轴向单缝偏心药柱爆破效应模型试验研究[J].中国安全生产科学技术,2020,16(2):92.[doi:10.11731/j.issn.1673-193x.2020.02.015]
 MA Shoulong,ZONG Qi,ZHANG Shouyang,et al.Model test study on blasting effect of axial singleslit eccentric charge[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(7):92.[doi:10.11731/j.issn.1673-193x.2020.02.015]

备注/Memo

备注/Memo:
国家自然科学基金项目(41472259);“十三五”国家重点研发计划重点专项(2016YFC0802505)
更新日期/Last Update: 2017-08-21