|本期目录/Table of Contents|

[1]张孟昀,马贵阳,李存磊,等.弯管与盲通管冲蚀磨损对比分析研究[J].中国安全生产科学技术,2017,13(3):76-81.[doi:10.11731/j.issn.1673-193x.2017.03.012]
 ZHANG Mengyun,MA Guiyang,LI Cunlei,et al.Comparative analysis on erosion wear of elbow pipe and blind tube[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(3):76-81.[doi:10.11731/j.issn.1673-193x.2017.03.012]
点击复制

弯管与盲通管冲蚀磨损对比分析研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年3期
页码:
76-81
栏目:
现代职业安全卫生管理与技术
出版日期:
2017-03-31

文章信息/Info

Title:
Comparative analysis on erosion wear of elbow pipe and blind tube
文章编号:
1673-193X(2017)-03-0076-06
作者:
张孟昀马贵阳李存磊孙宗琳肖辉宗
辽宁石油化工大学 石油天然气工程学院, 辽宁 抚顺 113001
Author(s):
ZHANG Mengyun MA Guiyang LI Cunlei SUN Zonglin XIAO Huizong
Academy of Petrol and Natural Gas Engineering, Liaoning Shihua University, Fushun Liaoning 113001, China
关键词:
弯管盲通管冲刷腐蚀液固两相流数值模拟
Keywords:
elbow pipe blind tube erosion-corrosion solid-liquid two-phase flow numerical simulation
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2017.03.012
文献标志码:
A
摘要:
为了研究石油管道流向急剧改变处的冲蚀磨损问题,采用DPM模型,通过改变入口流速、颗粒质量流速、颗粒直径,对90°弯管与盲通管的流场分布及冲蚀情况进行数值模拟。结果表明:弯管与盲通管最大冲蚀速率随入口流速的增大呈指数增长,随颗粒质量流速的增大呈线性增长;在50~100 μm粒径范围内,最大冲蚀速率随粒径的增加逐渐减小,在100~300 μm粒径范围内,随粒径的增加而增大;在入口流速、颗粒质量流速、颗粒直径相同的条件下,弯管最大冲蚀速率明显高于盲通管最大冲蚀速率,盲通管的耐蚀性更强;由于流体在盲通管产生涡旋现象,增加了颗粒能量的耗散,从而减小了进入下游管线颗粒的速率,使得颗粒更易积存于盲通段形成堆积层,减小了下游管段冲蚀速率。
Abstract:
Aiming at the problem of erosion wear in the position with sharp change of flow direction in oil pipeline, the numerical simulation was carried out on the flow field distribution and erosion situation of 90° elbow pipe and blind tube by using DPM model with changing the inlet velocity, particle mass flow rate and particle diameter. The results showed that the maximum erosion rates of elbow pipe and blind tube increase exponentially with the increase of inlet velocity, and they increase linearly with the increase of particle mass flow rate. The maximum erosion rates decrease gradually with the increase of particle diameter in the range of 50-100 μm, and they increase with the increase of particle diameter in the range of 100-300μm. Under the conditions of the same inlet velocity, particle mass flow rate and particle diameter, the maximum erosion rate of elbow pipe is significantly higher than that of blind tube, and the corrosion resistance of blind tube is better. Due to the vortex phenomenon of fluid in blind tube, the dissipation of particle energy increases, thereby the velocity of particles flowing into the downstream pipe decreases, which makes the particles more likely to accumulate in the blind tube section and form accumulation layer, thus the erosion rate of downstream pipe decreases.

参考文献/References:

[1]杜明俊, 张振庭, 张朝阳, 等. 多相混输管道90°弯管冲蚀破坏应力分析[J]. 油气储运, 2011, 30(6): 427-430. DU Mingjun, ZHANG Zhenting, ZHANG Chaoyang, et al. Multiphase pipeline 90° bend erosion stress analysis[J]. Oil & Gas Storage and Transportation, 2011, 30(6): 427-430.
[2]Zeng L, Zhang G A, Guo X P.Erosion-corrosion at different locations of X65 carbon steel elbow[J]. Corms. Sci., 2014, 85: 318.
[3]Zhang G A, Zeng L, Huang H L, et al. A study of flow accelerated corrosion at elbow of carbon steel pipeline by array electrode and computational fluid dynamics simulation[J]. Corros. Sci., 2013, 77: 334.
[4]Wang K, Li X F, Wang Y, et al. Numerical prediction of the maximum erosion location in liquid-solid two-phase flow of the elbow[J]. J. Eng. Thermophys., 2014, 35(4): 691.
[5]冯光. 气体钻井排砂管线冲蚀失效与变形分析[D]. 成都: 西南石油大学, 2014.
[6]汪贵磊, 陈勇, 严超宇, 等. 提升管出口T型弯头压降特性的实验分析[J]. 化工学报, 2014(2): 555-559. WANG Guilei, CHEN Yong, YAN Chaoyu, et al. Experimental analysis of T-abrupt exit’s pressure drop characteristics in riser[J]. Journal of Chemical Industry and Engineering(China), 2014(2): 555-559.
[7]何兴建, 李翔, 李军. T型弯头不同工况的冲蚀磨损数值模拟研究[J]. 化工设备与管道, 2015, 52(3): 69-72. HEXingjian, LI Xiang, LI Jun. Numerical simulation of erosion and abrasion in T bends under various conditions[J]. Process Equipment & Piping, 2015, 52(3): 69-72.
[8]Parsi M, Najmi K, Najafifard F, et al. A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 850-873.
[9]Njobuenwu D O, Fairweather M. Modeling of pipe bend erosion by dilute particle suspension[J]. Computers and Chemical Engineering, 2012, 42: 235-247.
[10]Wang K, Li X F, Wang Y, et al. Numerical prediction of the maximum erosion location in liquid-solid two-phase flow of the elbow[J]. J. Eng. Thermophys, 2014, 35(4): 691.
[11]Suzuki M, Inaba K, Yamamoto M. Numerical simulation of sand erosion in a square-section 90-degree bend[J]. J. Fluid Sci. Technol., 2008, 3(7): 868.
[12]Lin Z, Ruan X, Zhu Z, et al. Numerical study of solid particle erosion in a cavity with different wall heights[J]. Powder Technol., 2014, 254: 150.
[13]彭文山, 曹学文. 固体颗粒对液/固两相流弯管冲蚀作用分析[J]. 中国腐蚀与防护学报, 2015, 35(6): 556-562. PENG Wenshan, CAO Xuewen. Analysis on erosion of pipe bends induced by liquid-solid two-phase flow[J]. Journal of Chinese Society For Corrosion and Protection, 2015, 35(6): 556-562.

相似文献/References:

[1]唐绍猛,刘德俊,王光辉.油水两相流弯管处安全分析[J].中国安全生产科学技术,2016,12(10):96.[doi:10.11731/j.issn.1673-193x.2016.10.016]
 TANG Shaomeng,LIU Dejun,WANG Guanghui.Safety analysis on oil-water two-phase flow in curved pipe[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(3):96.[doi:10.11731/j.issn.1673-193x.2016.10.016]
[2]王佳音,帅健,刘道乾,等.内压作用下含体积型缺陷弯管极限载荷研究[J].中国安全生产科学技术,2019,15(9):158.[doi:10.11731/j.issn.1673-193x.2019.09.026]
 WANG Jiayin,SHUAI Jian,LIU Daoqian,et al.Research on ultimate load of elbow containing volumetric defects under effect of internal pressure[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(3):158.[doi:10.11731/j.issn.1673-193x.2019.09.026]
[3]成芳,易先中,彭灼,等.页岩气压裂弯管中液固两相流冲蚀磨损的数值模拟[J].中国安全生产科学技术,2019,15(11):29.[doi:10.11731/j.issn.1673-193x.2019.11.005]
 CHENG Fang,YI Xianzhong,PENG Zhuo,et al.Numerical simulation on erosion wear in shale gas fracturing bend pipe with liquidsolid twophase flow[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(3):29.[doi:10.11731/j.issn.1673-193x.2019.11.005]

备注/Memo

备注/Memo:
国家自然科学基金项目(41502100)
更新日期/Last Update: 2017-03-30