|本期目录/Table of Contents|

[1]张楚旋,李夕兵,董陇军,等.基于微震监测的岩体失稳智能预报[J].中国安全生产科学技术,2016,12(3):5-9.[doi:10.11731/j.issn.1673-193x.2016.03.001]
 ZHANG Chuxuan,LI Xibing,DONG Longjun,et al.Intelligent prediction of rock mass instability based on microseismic monitoring[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(3):5-9.[doi:10.11731/j.issn.1673-193x.2016.03.001]
点击复制

基于微震监测的岩体失稳智能预报
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
12
期数:
2016年3期
页码:
5-9
栏目:
学术论著
出版日期:
2016-03-30

文章信息/Info

Title:
Intelligent prediction of rock mass instability based on microseismic monitoring
文章编号:
1673-193X(2016)-03-0005-05
作者:
张楚旋12李夕兵1董陇军1康虔1
(1.中南大学 资源与安全工程学院,湖南 长沙 410083; 2.湖南科技大学 煤矿安全开采技术湖南省重点实验室,湖南 湘潭 411100)
Author(s):
ZHANG Chuxuan12 LI Xibing1 DONG Longjun1 KANG Qian1
(1. School of Resources and Safety Engineering, Central South University, Changsha Hunan 410083, China; 2. Hunan Province Key Laboratory of Safe Mining Techniques of Coal Mines, Hunan University of Science and Technology, Xiangtan Hunan 411100, China)
关键词:
微震监测岩体失稳b值能量指数施密特数累积视体积预报
Keywords:
microseismic monitoring rock mass instability b value energy index Schmidt number cumulative apparent volume prediction
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2016.03.001
文献标志码:
A
摘要:
岩体稳定性预报是微震监测工作的重要组成部分。探讨微震活动性参数变化作为岩体稳定性预测的可行性,结合用沙坝矿实际生产过程中观测到的现象,提出微震监测岩体失稳预报的一般模式。根据b值在岩体失稳前先增大后减小的趋势作为危险预警初始条件;并将能量指数、施密特数急剧下降以及累积视体积增加的时间段作为岩体失稳的预警期,将事件数的急剧下降作为危险的临界状态。用沙坝矿根据这一原理建立的岩体失稳预报模式可以达到采场失稳的智能预报,解决了人工判别预警期过程中效率低的难题,保障矿山的生产工作。
Abstract:
The prediction of rock mass stability is an important part of microseismic monitoring. The feasibility of taking the change of microseismicity parameters in the prediction of rock mass stability was discussed. Combined with the phenomena observed in practical production process of Shaba Mine, a general mode on prediction of rock mass instability based on microseismic monitoring was put forward. The trend of b value which increases at first and then decreases before rock mass instability was taken as the initial condition for danger warning. The time period with sharp fall of energy index and Schmidt number and increase of cumulative apparent volume were taken as the early warning period of rock mass instability. The sharp drop of events number was taken as a critical state of danger. The prediction mode of rock mass instability established according to the above principle in Shaba Mine could achieve the intelligent prediction of stope instability, and it solved the problem of low efficiency in the process of artificial discrimination early warning, which can guarantee the work safety in mine.

参考文献/References:

[1] LI X,DONG L. An efficient closed-form solution for acoustic emission source location in three-dimensional structures[J]. AIP Advances,2014,4(2):7 110-7118.
[2] 张楚旋,李夕兵,董陇军,等. 三函数四指标矿震信号S 波到时拾取方法及应用[J]. 岩石力学与工程学报, 2015,34(4): 433-444. ZHANG Chuxuan, LI Xibing, DONG Longjun, et al. The three functions four indicators S-wave phase picking method and application for microseismic signal in mines[J]. Chinese Journal of Rock Mechanics and Engineering, 2015,34(4): 433-444.
[3] Mendecki A J. Data-driven understanding of seismic rock mass response to mining[C]//Proceedings of the 5th International Symposium on Rockbursts and Seismicity in Mines (RaSiM5). Johannesburg, South Africa:[sn]. 2001: 1-9.
[4] Hudyma M R. Analysis and interpretation of clusters of seismic events in mines[M]. University of Western Australia, 2009.
[5] 夏永学, 康立军, 齐庆新, 等. 基于微震监测的 5 个指标及其在冲击地压预测中的应用[J]. 煤炭学报, 2010, 35(12): 2011-2016. XIA Yongxue,KANG Lijun,QI Qqingxin, et al. Five index of microseismic and their application in rock burst forecastion[J].Journal of China Coal Society, 2010,35(12):2011-2016.
[6]周钟, 蔡德文, 沙椿, 等. 岩石边坡微震监测安全预警与应用[J]. 长江科学院院报, 2014, 31(11): 149-154. ZHOU Zhong, CAI Dewen, SHA Chun, et al. Rock slope microseismic monitoring safety warning and application[J]. Yangtze River Scientific Research Institute, 2014, 31 (11): 149-154.
[7]尚仕科, 张苏闯, 王平, 等. 微震事件的多参数信息监测岩爆技术研究[J]. 有色金属: 矿山部分, 2014, 66(6): 1-3. SHANG Shike, ZHANG Suchuang, WANG Ping, et al. Study on rockburst monitoring technology through multi parameter information of microseismic events[J]. Nonferrous Metals: Mine Section, 2014, 66 (6): 1-3.
[8] 蔡武, 窦林名, 李振雷, 等. 微震多维信息识别与冲击矿压时空预测—以河南义马跃进煤矿为例[J]. 地球物理学报, 2014, 57(8): 2687-2700. CAI Wu, DOU Llinming, LI Lei, et al. Microseismic multidimensional information identification and spatio-timporal forecasting of rock burst:A case study of Yima Yuejin Coal Mine, Henan, China[J].Chinese Journal of Geophysics, 2014, 57 (8): 2687-2700.
[9] Gutenberg B, Richter C F. Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America. 1944, 34(4): 185-188.
[10]Cheung D J. Design risk assessment for burst-prone mines: Application in a Canadian mine[M]. 2010.
[11]Amitrano D. Variability in the power-law distributions of rupture events[J]. The European Physical Journal Special Topics, 2012, 205(1): 199-215.
[12]Schorlemmer D, Wiemer S. Earth science: Microseismicity data forecast rupture area[J]. Nature, 2005, 434(7037): 1086-1086.
[13] Brink A Z. Application of a microseismic system at western deep levels[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1992, 29(5): 305.
[14]Wang C, Wu A, Liu X, et al. Study on fractal characteristics of b value with microseismic activity in deep mining[J]. Procedia Earth and Planetary Science, 2009, 1(1): 592-597.
[15] 李志雄, 陶本藻. 基于岩石声发射实验结果探讨地震活动状态变化的预测意义[J]. 地震, 2007, 27(3): 10-19. LI Zhixiong TAO Benzao. Study on prediction meaning of state variation of seismicity based on AE result[J]. Earthquake, 2007, 27 (3): 10-19.
[16]Lynch R A, Mendecki A J. High-resolution seismic monitoring in mines[J]. Rockbursts and Seismicity in Mines-RaSiM5. Johannesburg, South Africa:[sn]. 2001: 19-24.
[17] Mendecki A J. Data-driven understanding of seismic rock mass response to mining[C]. 2001.
[18] 唐礼忠,汪令辉,张君,等. 大规模开采矿山地震视应力和变形与区域性危险地震预测[J]. 岩石力学与工程学报, 2011,30(6): 1168-1178. TANG Lizhong, WANG Linghui, ZHANG Jun, et al. Seismic apparent stress and deformation in a deep mine under large-scale mining and areal hazardous seismic prediction[J]. Chinese Journal of Rock Mechanics and Engineering, 2011,30(6): 1168-1178.
[19] 陈炳瑞,冯夏庭,曾雄辉,等. 深埋隧洞TBM掘进微震实时监测与特征分析[J]. 岩石力学与工程学报. 2011, 30(2): 275-283. CHEN Bingrui, FENG Xiating, ZENG Xionghui, et al. Real-time microseismic monitoring and its characteristic analysis during TBM tunneling in deep-buried tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 275-283.
[20] 张楚旋,李夕兵,董陇军,等. 顶板冒落前后微震活动性参数分析及预警[J]. 岩石力学与工程学报,2015(S2): 15-23. ZHANG Chuxuan, LI Xibing, DONG Longjun, et al. Analysis of microseismic activity parameters pre-and post roof caving and early warning[J]. Chinese Journal of Rock Mechanics and Engineering, 2015(S2): 15-23.

相似文献/References:

[1]张飞,刘德峰,张衡,等.基于IMS微震监测系统的微震事件定位精度分析[J].中国安全生产科学技术,2013,9(6):21.[doi:10.11731/j.issn.1673-193x.2013.06.004]
 ZHANG Fei,LIU De feng,ZHANG Heng,et al.Location accuracy analysis of the seismic events based on the IMS microseismic monitoring system[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(3):21.[doi:10.11731/j.issn.1673-193x.2013.06.004]
[2]张宏伟,朱峰,盛继权,等.多手段综合分析特厚煤层分层开采覆岩破坏高度[J].中国安全生产科学技术,2016,12(1):11.[doi:10.11731/j.issn.1673-193x.2016.01.002]
 ZHANG Hongwei,ZHU Feng,SHENG Jiquan,et al.Multiple means comprehensive analysis on failure height of overburden strata in slicing mining of ultra thick coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(3):11.[doi:10.11731/j.issn.1673-193x.2016.01.002]
[3]张宏伟,朱峰,盛继权,等.多手段综合分析特厚煤层分层开采覆岩破坏高度[J].中国安全生产科学技术,2016,12(1):11.[doi:10.11731/j.issn.1673-193x.2016.01.002]
 ZHANG Hongwei,ZHU Feng,SHENG Jiquan,et al.Multiple means comprehensive analysis on failure height of overburden strata in slicing mining of ultra thick coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(3):11.[doi:10.11731/j.issn.1673-193x.2016.01.002]
[4]杨逾,孙艺丹,张国赟.动载下巷道围岩微震响应特征及支护研究[J].中国安全生产科学技术,2020,16(6):73.[doi:10.11731/j.issn.1673-193x.2020.06.012]
 YANG Yu,SUN Yidan,ZHANG Guoyun.Study on microseismic response characteristics and support technology of roadway surrounding rock under dynamic load[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(3):73.[doi:10.11731/j.issn.1673-193x.2020.06.012]
[5]刘强,魏银鸿,王平,等.自然崩落法顶板稳定性监测分析与预警研究*[J].中国安全生产科学技术,2021,17(8):91.[doi:10.11731/j.issn.1673-193x.2021.08.014]
 LIU Qiang,WEI Yinhong,WANG Ping,et al.Study on roof stability monitoring analysis and early warning by natural caving method[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(3):91.[doi:10.11731/j.issn.1673-193x.2021.08.014]
[6]王云刚,唐飞,杜炳成,等.超长回采工作面微震特征的影响因素研究*[J].中国安全生产科学技术,2022,18(8):91.[doi:10.11731/j.issn.1673-193x.2022.08.014]
 WANG Yungang,TANG Fei,DU Bingcheng,et al.Study on influencing factors of microseismic characteristics of ultra-long mining face[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(3):91.[doi:10.11731/j.issn.1673-193x.2022.08.014]
[7]雷文杰,张朝阳.原煤卸围压过程微震信号响应特征*[J].中国安全生产科学技术,2022,18(10):94.[doi:10.11731/j.issn.1673-193x.2022.10.014]
 LEI Wenjie,ZHANG Zhaoyang.Response characteristics of micro-seismic signals during unloading confining pressure process of raw coal[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(3):94.[doi:10.11731/j.issn.1673-193x.2022.10.014]
[8]吴雪菲,李红霞,朱梦博.单侧采空工作面底板采动破坏微震监测与数值模拟研究*[J].中国安全生产科学技术,2023,19(4):78.[doi:10.11731/j.issn.1673-193x.2023.04.011]
 WU Xuefei,LI Hongxia,ZHU Mengbo.Microseismic monitoring and numerical simulation of coal seam floor mining-induced failure in unilateral mined-out face[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(3):78.[doi:10.11731/j.issn.1673-193x.2023.04.011]

备注/Memo

备注/Memo:
国家自然科学基金项目(41272304,11472311);湖南科技大学煤矿安全开采技术湖南省重点实验室开放基金项目(201203)
更新日期/Last Update: 2016-04-15