|本期目录/Table of Contents|

[1]马海峰,殷志强,李传明,等.基于体积应变含瓦斯煤增透率模型及采动响应研究[J].中国安全生产科学技术,2014,10(8):22-27.[doi:10.11731/j.issn.1673-193x.2014.08.004]
 MA Hai-feng,YIN Zhi-qiang,LI Chuan-ming,et al.Study on model of mining-enhanced permeability and mining response of gas-filled coal based on volumetric strain[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(8):22-27.[doi:10.11731/j.issn.1673-193x.2014.08.004]
点击复制

基于体积应变含瓦斯煤增透率模型及采动响应研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
10
期数:
2014年8期
页码:
22-27
栏目:
学术论著
出版日期:
2014-08-31

文章信息/Info

Title:
Study on model of mining-enhanced permeability and mining response of gas-filled coal based on volumetric strain
作者:
马海峰1殷志强2李传明2李家卓2庞冬冬2刘万荣2
(1 中国矿业大学<北京>资源与安全工程学院,北京 100083;2 安徽理工大学,安徽 淮南 232001)
Author(s):
MA Hai-feng1 YIN Zhi-qiang2 LI Chuan-ming2 LI Jia-zhuo2 PANG Dong-dong2 LIU Wan-rong2
(1. Faculty of Resources and Safety Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;  2. Anhui University of Science and Technology, Huainan Anhui 232001, China)
关键词:
渗透性采动响应增透率抽采量体积应变
Keywords:
permeability mining response miningenhanced permeability extraction volume volumetric strain
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2014.08.004
文献标志码:
A
摘要:
为获得含瓦斯煤开采过程中渗透率的采动响应规律,从孔隙率的基本定义出发,通过引入增透率来反映单位体积改变下煤体渗透率的变化,建立了基于体积应变的含瓦斯煤增透率模型。基于增透率模型,结合工程实例采用Comsol Multiphysics模拟了含瓦斯煤开采过程中增透率的变化规律,并开展了增透率采动响应的试验研究。研究结果表明:增透率模型可对采动裂隙网络形成的煤层透气性进行定量评价研究,采动是影响含瓦斯煤增透率的关键因素,受采动影响,煤体体积应变、增透率的变化规律均基本一致,煤体膨胀变形、增透率随采煤工作面的推进逐渐增大,增透率的变化滞后于体积应变的变化,且越靠近工作面煤层增透效果和瓦斯抽采效果越好;沿煤层倾向,回风巷侧最大瓦斯抽采量大于运输巷侧,煤体增透率亦大于运输巷侧。依据增透率的采动响应规律调整瓦斯抽采孔与工作面的角度,可增加抽采量,降低工作面瓦斯浓度。
Abstract:
In order to obtain the mining response laws of permeability in the process of gasfilled coal mining, starting from the basic definition of porosity, the change of permeability of coal under the unit volume change was reflected by introducing miningenhanced permeability, the mining response model of permeability was established based on volumetric strain. The variation of miningenhanced permeability in the process of coal mining was simulated based on the miningenhanced permeability model by using Comsol Multiphysics, and the mining response of miningenhanced permeability in the field was studied. The results showed that the coal seam permeability formed by the mininginduced fracture network can be quantitatively evaluated by the miningenhanced permeability model. Mining is the key controlling factor affecting coal permeability, the variation of volumetric strain, miningenhanced permeability is consistent affected by mining, the swelling deformation of coal and permeability increases gradually as the working face advancing, the miningenhanced permeability changes lag behind the changes of volumetric strain, and the closer to the face, the better results of miningenhanced permeability effects and gas extraction. Along the coal seam, the largest gas drainage, the fractured development and the extent of damage at the return airway side seam are greater than those of haulage roadway at the same location away from the face; miningenhanced permeability is also greater than that of haulage roadway. The gas holes are set to a certain angle with working face based on the mining response laws of miningenhanced permeability; it can prolong the gas drainage time, increase the amount of gas drainage and prevent the gas gauge effectively.

参考文献/References:

[1]邓泽,康永尚,刘洪林,等.开发过程中煤储层渗透率动态变化特征[J].煤炭学报,2009,34(7): 947-951 DENG Ze, KANG Yong-shang, LIU Hong-lin, et al. Dynamic variation character of coalbed methane reservoir permeability during depletion[J]. Journal of China Coal Society, 2009, 34(7): 947-951
[2]赵阳升,胡耀青,杨栋,等.三维应力下吸附作用对煤岩体气体渗流规律影响的实验研究[J].岩石力学与工程学报,1999,18(6): 651-653 ZHAO Yang-sheng, HU Yao-qing, YANG Dong, et al. The experimental study on the gas seepage law of rock related to adsorption under3D stresses[J].Chinese Journal of Rock Mechanics and Engineering, 1999, 18(6): 651-653
[3]贺玉龙,杨立中.围压升降过程中岩体渗透率变化特性的试验研究[J].岩石力学与工程学报,2004,23(3): 415-419 HE Yu-long,YANG Li-zhong. Testing study on variational characteristics of rockmass permeability under loadingunloading of confining pressure[ J]. Chinese Journal of Rock Mechanics and Engineering,2004, 23(3): 415-419
[4]冉启全,李士伦.流固耦合油藏数值模拟中物性参数动态模型研究[J].石油勘探与开发,1997,24(3): 6165 RAN Qiquan, LI Shilun. Study on dynamic models of reservoir parameters in the coupled simulation of multiphase flow and reservoir deformation[J]. Petroleum Exploration and Development, 1997, 24(3): 6165 
[5]卢平,沈兆武,朱贵旺,等.岩样应力应变全过程中的渗透性表征与试验研究[J].中国科学技术大学学报,2002,32(6): 678684 LU Ping, SHEN Zhaowu, ZHU Guiwang, et al.Characterization and experimental study of the permeability of rocksamples during complete stressstrain course[J]. Journal of University of Science and Technology of China, 2002, 32(6): 678-684 
[6]李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型[J].水动力学研究与进展,2003,18(4): 419-426 LI Pei-chao, KONG Xiang-yan, LU De-tang, et al. Mathematical modeling of flow in saturated porous media on account of fluidstructure coupling effect[J]. Journal of Hydrodynamics, 2003, 18(4): 419-426 
[7]BORISENKO A A. Effect of gas pressure in coal strata[J].Soviet Mining Science, 1985, 21(5): 88-91
[8]ETTINGER I L. Swelling stress in the gascoal system as an energy source in the development of gas bursts[J].Soviet Mining Science, 1979, 15(5): 494-501
[9]袁亮,郭华,沈宝堂,等. 低透气性煤层群煤与瓦斯共采中的高位环形裂隙体[J]. 煤炭学报,2011,36(3):357-365YUAN Liang, GUO Hua, SHEN Bao-tang, et al. Circular overlying zone at longwall panel for efficient methane capture of mutiple coal seams with low permeability [J]. Journal of China Coal Society, 2011,36(3):357-365 
[10]张勇,许力峰,刘珂铭,等. 采动煤岩体瓦斯通道形成机制及演化规律[J]. 煤炭学报,2012,37(9):1444-1450 ZHANG Yong, XU Li-feng, LIU Ke-ming, et al. Formation mechanism and evolution laws of gas flow channel in mining coal and rock[J]. Journal of China Coal Society, 2012,37(9):14441450
[11]谢和平,高 峰,周宏伟,等. 煤与瓦斯共采中煤层增透率理论与模型研究[J]. 煤炭学报,2013,38(7):11011109 XIE Heping, GAO Feng, ZHOU Hongwei, et al. On theoretical and modeling approach to miningenhanced permeability for simultaneous exploitation of coal and gas[J]. Journal of China Coal Society, 2013,38(7):11011109
[12]李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型[J].水动力学研究与进展,2003,18(4):419426 LI Peichao, KONG Xiangyan, LU Detang. Mathematical modeling of flow in saturated porous media on account of fluidstructure coupling effect[J]. Journal of Hydrodynamics, 2003, 18(4):419426 
[13]陶云奇,许江,彭守建,等.含瓦斯煤孔隙率和有效应力影响因素试验研究[J].岩土力学,2010,31(11): 34173422 TAO Yunqi, XU Jiang, PENG Shoujian, et al. Experimental study on influencing factor of porosity and effective stress of gasfilled coal [J]. Rock and Soil Mechanics, 2010, 31(11): 34173422
[14]李祥春,郭勇义,吴世跃. 煤吸附膨胀变形与孔隙率、渗透率关系的分析[J]. 太原理工大学学报,2005,36(3):264266 LI Xiangchun, GUO Yongyi, WU Shiyue. Analysis of the relation of porosity, permeability and swelling deformation of coal[J]. Journal of Taiyuan University of Technology, 2005, 36(3): 264266
[15]孔祥言. 高等渗流力学[M]. 合肥:中国科学技术大学出版社,1999

相似文献/References:

[1]李树刚,魏宗勇,潘红宇,等.上保护层开采相似模拟实验台的研发及应用[J].中国安全生产科学技术,2013,9(3):5.[doi:10.11731/j.issn.1673-193x.2013.03.01]
 LI Shu gang,WEI Zong yong,PAN Hong yu,et al.Research and development of simulation experimental platform on upper protective layer mining and its application[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(8):5.[doi:10.11731/j.issn.1673-193x.2013.03.01]
[2]王文,李化敏,高保彬,等.远距离保护层开采煤层渗透特性及瓦斯抽采技术研究[J].中国安全生产科学技术,2014,10(11):84.[doi:10.11731/j.issn.1673-193x.2014.11.014]
 WANG Wen,LI Hua-min,GAO Bao-bin,et al.Study on permeability characteristic of coal seam and gas extractiontechniques in coal mining with long distance protection coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(8):84.[doi:10.11731/j.issn.1673-193x.2014.11.014]
[3]岳立新,孙可明.超临界CO2增透煤微观图像重构及三维数值模拟[J].中国安全生产科学技术,2017,13(1):58.[doi:10.11731/j.issn.1673-193x.2017.01.010]
 YUE Lixin,SUN Keming.Microscopic image reconstruction and three-dimensional numerical simulation of supercritical CO2 permeability improvement coal[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(8):58.[doi:10.11731/j.issn.1673-193x.2017.01.010]

备注/Memo

备注/Memo:
国家自然科学基金项目(51304007);中国博士后基金项目(213M531495);中国矿业大学(北京)博士研究生拔尖创新人才培育基金项目(800015Z648)
更新日期/Last Update: 2014-09-26