|本期目录/Table of Contents|

[1]谢汶含,蒋永清,孙大伟,等.基于数字孪生及GA-BP神经网络的开关柜温升风险预测*[J].中国安全生产科学技术,2025,21(2):184-190.[doi:10.11731/j.issn.1673-193x.2025.02.024]
 XIE Wenhan,JIANG Yongqing,SUN Dawei,et al.Risk prediction on temperature rise of switchgear based on digital twin and GA-BP neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2025,21(2):184-190.[doi:10.11731/j.issn.1673-193x.2025.02.024]
点击复制

基于数字孪生及GA-BP神经网络的开关柜温升风险预测*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
21
期数:
2025年2期
页码:
184-190
栏目:
职业安全卫生管理与技术
出版日期:
2025-02-28

文章信息/Info

Title:
Risk prediction on temperature rise of switchgear based on digital twin and GA-BP neural network
文章编号:
1673-193X(2025)-02-0184-07
作者:
谢汶含蒋永清孙大伟王志伟孙超
(1.哈尔滨理工大学 测控技术与通信工程学院,黑龙江 哈尔滨 150080;
2.黑龙江省新产业投资集团有限公司,黑龙江 哈尔滨 150090;
3.黑龙江辰能清洁能源有限公司,黑龙江 哈尔滨 150006)
Author(s):
XIE Wenhan JIANG Yongqing SUN Dawei WANG Zhiwei SUN Chao
(1.School of Measurement and Communication Engineering,Harbin University of Science and Technology,Harbin Heilongjiang 150080,China;
2.Heilongjiang New Industry Investment Group Co.,Ltd.,Harbin Heilongjiang 150090,China;
3.Heilongjiang Chenneng Clean Energy Co.,Ltd.,Harbin Heilongjiang 150006,China)
关键词:
开关柜温升风险预测数字孪生GA-BP神经网络
Keywords:
switchgear temperature rise risk prediction digital twin GA-BP neural network
分类号:
X913
DOI:
10.11731/j.issn.1673-193x.2025.02.024
文献标志码:
A
摘要:
风电机组开关柜是风电场的重要电力设备之一,为保障开关柜的稳定运行和风电机组的安全,针对开关柜内部器件温升异常问题进行研究。采用数字孪生技术对开关柜温升状态进行数字化建模,设计开关柜数字孪生架构模型,在不同条件下仿真开关柜触头温升,通过GA-BP神经网络对温升数据进行训练学习,实现触头温升异常风险预测。研究结果表明:数字孪生体可再现物理开关柜运行的全部温度数据,通过GA-BP网络模型预测开关柜温升风险平均绝对百分比误差为0.03%,可实现温升风险准确预测,避免开关柜因温升过高而导致热故障发生。
Abstract:
The switchgear of wind turbine is one of the important power equipment of wind farm.In order to ensure the stable operation of switchgear and the safety of wind turbine,the abnormal temperature rise of internal devices of the switchgear was studied.The digital twin technology was used to digitally model the temperature rise state of the switchgear,and the digital twin architecture model of the switchgear was designed.The temperature rise of contact head in the switchgear was simulated under different conditions,and the temperature rise data was trained and learned by GA-BP neural network to realize the risk prediction on the abnormal temperature rise of contact head.The results show that the digital twin body can reproduce all the temperature data of the physical switchgear operation.The average absolute percentage error of temperature rise risk of the switchgear predicted by the GA-BP network model is 0.03%,which can accurately predict the temperature rise risk and avoid the thermal failure of the switchgear due to excessive temperature rise.

参考文献/References:

[1]LI Y,DUAN J,LIANG J,et al.Study on contact resistance of 10 kV switch cabinet[C]//2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC).IEEE,2016:1450-1454.
[2]程占峰,夏博,李波涛,等.基于边缘计算的GIS母线热特性状态辨识研究[J].电力大数据,2020,23(11):31-37. CHENG Zhanfeng,XIA Bo,LI Botao,et al.Research on state identification of thermal characteristics for GIS busbar based on edge computing[J].Power Systems and Big Data,2020,23(11):31-37.
[3]彭涛,唐炳南,赵莉华,等.中压开关柜典型接触故障下的温升特性研究[J].高电压技术,2021,47(12):4331-4345. PENG Tao,TANG Bingnan,ZHAO Lihua,et al.Study on the temperature rise characteristics of medium-voltage switchgear under typical contact failure[J].High Voltage Engineering,2021,47(12):4331-4345.
[4]张云朋,胡海燕,李义鹏,等.开关柜温升在线监测技术研究[J].安全、健康和环境,2020,20(7):12-16. ZHANG Yunpeng,HU Haiyan,LI Yipeng,et al.Study on online monitoring technology of temperature rise of switchgear[J].Safety Health & Enviroment,2020,20(7):12-16.
[5]兰剑,韩冬,冯英,等.基于幂函数模型的高压开关柜温升预测与试验研究[J].高压电器,2023,59(10):96-103. LAN Jian,HAN Dong,FENG Ying,et al.Study on temperature rise prediction and test of high voltage switchgear cabinet based on power function model[J].High Voltage Apparatus,2023,59(10):96-103.
[6]王乐宁,邱华,唐诗,等.基于ABPNN神经网络的开关柜温升风险评估方法研究[J].中国农村水利水电,2022(11):203-207. WANG Lening,QIU Hua,TANG Shi,et al.Research on the risk assessment method of temperature rise of switchgear based on adaptive BP neural network(ABPNN)[J].China Rural Water and Hydropower,2022(11):203-207.
[7]王欣.基于磁-热耦合的高压开关柜热分析及温升预测[D].南宁:广西大学,2021.
[8]XIE B Y.Research on temperature monitoring method and system design for key high voltage equipment of wind farm[J].IOP Conference Series:Earth and Environmental Science,2021,769(4):42120-42125.
[9]WANG B,JIANG X Y,JIAN Y,et al.Numerical study on temperature rise and structure optimization for a three-phase gas insulated switchgear busbar chamber[J].Energy,2022,254(3):124463-124476.
[10]TAO F.Make more digital twins[J].Nature,2019,573(7775):490-491.
[11]陶飞,张贺,戚庆林,等.数字孪生模型构建理论及应用[J].计算机集成制造系统,2021,27(1):1-15. TAO Fei,ZHANG He,QI Qinglin,et al.Theory of digital twin modeling and its application[J].Computer Integrated Manufacturing Systems,2021,27(1):1-15.
[12]TAO F.Digital twin modeling[J].Journal of Manufacturing Systems,2022,64:372-389.
[13]QI Q,TAO F,HU T,et al.Enabling technologies and tools for digital twin[J].Journal of Manufacturing Systems,2021,58:3-21.
[14]陶飞,刘蔚然,张萌,等.数字孪生五维模型及十大领域应用[J].计算机集成制造系统,2019,25(1):1-18. TAO Fei,LIU Weiran,ZHANG Meng,et al.Five dimension digital twin model and its ten applications[J].Computer Integrated Manufacturing Systems,2019,25(1):1-18.
[15]陈长坤,张健,焦伟冰,等.数字孪生消防救援技术系统架构及关键技术分析[J].中国安全科学学报,2023,33(8):156-163. CHEN Changkun,ZHANG Jian,JIAO Weibing,et al.Research on architecture and key technologies of fire rescue technology system based on digital twin[J].China Safety Science Journal,2023,33(8):156-163.
[16]杨威,吴明孝,石磊,等.高压开关柜触头温度监测技术的研究综述与展望[J].电工电气,2022(6):1-7,13. YANG Wei,WU Mingxiao,SHI Lei,et al.Summary and prospect of temperature monitoring methods for high voltage switchgear[J].Electrician and Electrician,2022(6):1-7,13.
[17]MMH S,SM C,SK D,et al.Towards electric digital twin grid:technology and framework review[J].Energy and AI,2023,11:100213.
[18]JVSD A,CH D S,et al.Energy digital twin applications:a review[J].Renewable and Sustainable Energy Reviews,2023,188:113891.
[19]WRIGHT L,DAVIDSON S.How to tell the difference between a model and a digital twin[J].Advanced Modeling and Simulation in Engineering Sciences,2020,7:1-13.
[20]SONG X Y,JIANG T,et al.Parameter tuning for dynamic digital twins in inverter-dominated distribution grid[J].IET Renewable Power Generation,2020,14(5):811-821.
[21]马信友,王立军,王睿,等.故障条件下中压开关柜温升特性的仿真研究[J].高电压技术,2022,48(6):2276-2282. MA Xinyou,WANG Lijun,WANG Rui,et al.Simulation study of temperature rise characteristics of medium voltage switchgear under fault conditions[J].High Voltage Engineering,2022,48(6):2276-2282.
[22]ADIL R,OMER S,TROND K.Digital twin:values,challenges and enablers from a modeling perspective[J].IEEE Access,2020,8:21980-22012.
[23]陶飞,刘蔚然,刘检华,等.数字孪生及其应用探索[J].计算机集成制造系统,2018,24(1):1-18. TAO Fei,LIU Weiran,LIU Jianhua,et al.Digital twin and its potential application exploration[J].Computer Integrated Manufacturing Systems,2018,24(1):1-18.
[24]HOLM R.Electric contacts:theory and applications[M].Berlin,Germany:Springer,1967.
[25]李少飞,马兴明,杜璇.基于ANSYS和BPNN的开关柜温度场及温度预测研究[J].黑龙江电力,2021,43(1):53-58,77. LI Shaofei,MA Xingming,DU Xuan.Research on temperature field and temperature prediction of switchgear based on ANSYS and BPNN[J].Heilongjiang Electric Power,2021,43(1):53-58,77.
[26]郭文强,董瑶,李清华,等.PSO-BP神经网络在开关柜设备温度预测中的应用[J].陕西科技大学学报,2020,38(1):149-153. GUO Wenqiang,DONG Yao,LI Qinghua,et al.Application of PSO BP neural network in temperature prediction for switchgear equipment[J].Journal of Shaanxi University of Science & Technology,2020,38(1):149-153.
[27]全国熔断器标准化技术委员会.规定电气设备部件(特别是接线端子)允许温升的导则:GB/T 25840—2010[S].北京:中国标准出版社,2011.
[28]全国高压试验技术标准化分技术委员会.带电设备红外诊断应用规范:DL/T 664—2016[S].北京:中国电力出版社,2016.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2024-05-10
* 基金项目: 国家自然科学基金项目(11704090)
作者简介: 谢汶含,硕士研究生,主要研究方向为智慧安全。
通信作者: 蒋永清,硕士,教授,主要研究方向为工业安全、能源安全。
更新日期/Last Update: 2025-03-04