|本期目录/Table of Contents|

[1]解恒星,张雄,董锦洋,等.基于CNN_BiLSTM的矿井瓦斯涌出量预测模型*[J].中国安全生产科学技术,2024,20(11):53-59.[doi:10.11731/j.issn.1673-193x.2024.11.007]
 XIE Hengxing,ZHANG Xiong,DONG Jinyang,et al.Prediction model of mine gas emission based on CNN_BiLSTM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(11):53-59.[doi:10.11731/j.issn.1673-193x.2024.11.007]
点击复制

基于CNN_BiLSTM的矿井瓦斯涌出量预测模型*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
20
期数:
2024年11期
页码:
53-59
栏目:
职业安全卫生管理与技术
出版日期:
2024-11-30

文章信息/Info

Title:
Prediction model of mine gas emission based on CNN_BiLSTM
文章编号:
1673-193X(2024)-11-0053-07
作者:
解恒星张雄董锦洋刘晓东姚小兵毕振彪李磊
(1.贵州金沙龙凤煤业有限公司,贵州 毕节 551700;
2.太原理工大学 安全与应急管理工程学院,山西 晋中 030024;
3.晋能控股煤业集团 晋城煤炭通风部,山西 晋城 048000)
Author(s):
XIE Hengxing ZHANG Xiong DONG Jinyang LIU Xiaodong YAO Xiaobing BI Zhenbiao LI Lei
(1.Guizhou Jinsha Longfeng Coal Industry Co.,Ltd.,Bijie Guizhou 551700,China;
2.School of Safety and Emergency Management Engineering,Taiyuan University of Technology,Jinzhong Shanxi 030024,China;
3.Shanxi Energy Holdings Coal Industry Group,JinCheng Coal Mine Ventilation Department,Jincheng Shanxi 048000,China)
关键词:
瓦斯涌出量预测模型卷积神经网络双向长短时记忆网络反向神经网络基线对比
Keywords:
prediction model of gas emission quantity convolutional neural network bidirectional short-duration memory network reverse neural network baseline comparison
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2024.11.007
文献标志码:
A
摘要:
为了实现对瓦斯涌出量准确预测,从而有效预防瓦斯灾害。提出1种结合卷积神经网络(convolutional neural network,CNN)和双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)的瓦斯涌出量预测模型,采用CNN在时间序列上提取瓦斯涌出量及其影响因素的局部关键特征,有效捕捉数据的局部时序相关性;BiLSTM模型利用这些特征,通过其前向和后向处理能力,全面捕捉时间序列中长期依赖性和复杂模式。研究结果表明:该模型预测准确率达93.6%,均方误差显著低于CNN、BPNN、LSTM、BiLSTM、CNN_LSTM、CNN_BiLSTM 6个模型,决定系数接近1,表明其出色的预测能力和解释力。研究结果可有效预测瓦斯涌出量波动,有助于提高矿井瓦斯风险预警能力,提升矿井安全管理水平。
Abstract:
In order to achieve the accurate prediction of gas emission quantity and effectively prevent gas disaster,a prediction model of gas emission quantity combining the convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) network was proposed.The gas emission quantity and key local features of its influencing factors were extracted from time series by using CNN,and the local temporal correlation of data was effectively captured.These features were used by the BiLSTM model,which leveraged its forward and backward processing capabilities to comprehensively capture the long-term dependency and complex patterns in the time series.The results show that the model has an accuracy rate of 93.6%,with a significantly lower mean square error than the CNN,back propagation neural network (BPNN),long short-term memory (LSTM),BiLSTM,convolutional neural network-long short-term memory (CNN_LSTM),and CNN_BiLSTM models.The coefficient of determination is close to 1,indicating its excellent predictive ability and explanatory power.The research results can effectively predict the fluctuation of gas emission quantity,contribute to improve the gas risk warning capability,and enhance the safety management level of mines.

参考文献/References:

[1]于航,徐耀松.改进鹈鹕算法优化AM-GRU的瓦斯涌出量预测模型研究[J/OL].控制工程,1-11[2024-11-04].https://doi.org/10.14107/j.cnki.kzgc.20230438.
[2]WANG L,LI J,ZHANG W,et al.Research on the gas emission quantity prediction model of improved artificial bee colony algorithm and weighted least squares support vector machine (IABC-WLSSVM)[J].Applied Bionics and Biomechanics,2022,2022:4792988.
[3]RONG L,XINTAN C,PENGTAO J,et al.Research on combination forecasting model of mine gas emission[J].International Journal of Advanced NetworkMonitoring and Controls,2018,2(3):194-198.
[4]陈巧军,余浩,李艳昌,等.基于KPCA-LSSVM的回采工作面瓦斯涌出量的预测[J].中国安全生产科学技术,2024,20(4):78-84. CHEN Qiaojun,YU Hao,LI Yanchang,et al.Prediction of gas emission quantity in mining face based on KPCA-LSSVM[J].Journal of Safety Science and Technology,2024,20(4):78-84.
[5]WU X,YANG Z,WU D D.Advanced computational methods for mitigating shock and vibration hazards in deep mines gas outburst prediction using SVM optimized by grey relational analysis and APSO algorithm[J].Shock and Vibration,2021:551320.
[6]BENQING Y.Study on gas emission prediction of working face based on GM(1,1) model[J].Journal of Physics:Conference Series,2020,1549(4):042031.
[7]付华,谢森,徐耀松,等.基于ACC-ENN算法的煤矿瓦斯涌出量动态预测模型研究[J].煤炭学报,2014,39(7):1296-1301. FU Hua,XIE Sen,XU Yaosong,et al.Gas emission dynamic prediction model of coal mine based on ACC-ENN algorithm[J].Journal of China Coal Society,2014,39(7):1296-1301.
[8]付华,姜伟,单欣欣.基于耦合算法的煤矿瓦斯涌出量预测模型研究[J].煤炭学报,2012,37(4):654-658. FU Hua,JIANG Wei,SHAN Xinxin.Study on coupling algorithm on coal mine gas emission forecast model[J].Journal of China Coal Society,2012,37(4):654-658.
[9]周旭,杨佳鹏,俎毓伟.基于NMF-HGS-RF的瓦斯涌出量预测研究[J].矿业安全与环保,2023,50(3):117-123. ZHOU Xu,YANG Jiapeng,ZU Yuwei.Prediction of gas emission based on NFM-HGS-RF [J].Mining Safety & Environmental Protection,2023,50(3):117-123.
[10]展广涵,王雨虹,付华,等.基于变分模态分解与深度集成组合模型的瓦斯涌出量预测[J].控制工程,2024,31(3):478-488. ZHAN Guanghan,WANG Yuhong,FU Hua,et,al.Gasemission prediction based on variational mode decomposition and deep integration model[J].Control Engineering of China,2024,31(3):478-488.
[11]荣统瑞,侯恩科,夏冰冰.基于二次分解和BO-BiLSTM组合模型的采煤工作面瓦斯涌出量预测方法研究[J].煤矿安全,2024,55(5):83-92. RONG Tongrui,HOU Enke,XIA Bingbing.Prediction method of gas emission in coal face based on quadratic decomposition and BO-BiLSTM model [J].Safety in Coal Mines,2024,55(5):83-92.
[12]徐耀松,白济宁,王雨虹,等.基于CEEMDAN-DA-GRU 的瓦斯涌出量预测模型[J].传感技术学报,2023,36(3):441-448. XU Yaosong,BAI Jining,WANG Yuhong,et al.Prediction model of gas emission based on CEEMDAN-DA-GRU[J].Journal of Sensing technology,2023,36(3):441-448.
[13]SONG W,HAN X,QI J.Prediction of gas emission in the working face based on LASSO-WOA-XGBoost[J].Atmosphere,2023,14(11):1628.
[14]BI S H,SHAO L S,QI Z H,et al.Prediction of coal mine gas emission based on hybrid machine learning model[J].Earth Science Informatics,2022,16(1):501-513.
[15]SHAO L S,ZHANG K.A gas emission prediction model based on feature selection and improved machine learning[J].Processes,2023,11(3):883-883.
[16]马恒,任美学,高科.基于随机搜索优化XGBoost的瓦斯涌出量预测模型[J].中国安全科学生产技术,2022,18(5):129-134. MA Heng,REN Meixue,GAO Ke.Gas emission prediction model based on random search optimization XGBoost[J].Journal of Safety Science and Technology,2022,18(5):129-134.
[17]兰海平,张志刚,徐再刚,等.基于LSTM的瓦斯浓度预测与防突预警系统设计[J].矿业安全与环保,2023,50(2):64-70. LAN Haiping,ZHANG Zhigang,XU Zaigang,et al.Design of gas concentration prediction and early warning system for outburst accident based on LSTM[J].Mining Safety & Environmental Protection,2023,50(2):64-70.
[18]祁云,白晨浩,代连朋,等.改进双向长短期记忆神经网络的瓦斯涌出量预测[J/OL].安全与环境学报,1-10[2024-11-04].https://doi.org/10.13637/j.issn.1009-6094.2024.0383.
[19]阴艳超,唐进,顾文娟.融合时序知识图谱与CNN-LSTM的流程生产工艺质量预测[J/OL].计算机集成制造系统,1-15[2024-11-04].https://doi.org/10.13196/j.cims.2023.0324.

相似文献/References:

[1]余琼芳,徐静,杨艺.基于CNN_LSTM模型的复杂支路故障电弧检测*[J].中国安全生产科学技术,2022,18(4):204.[doi:10.11731/j.issn.1673-193x.2022.04.029]
 YU Qiongfang,XU Jing,YANG Yi.Fault arc detection of complex branch based on CNN_LSTM model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(11):204.[doi:10.11731/j.issn.1673-193x.2022.04.029]
[2]曹亚利,李振雷,刘旭东,等.基于卷积神经网络的冲击地压预警方法研究*[J].中国安全生产科学技术,2022,18(10):101.[doi:10.11731/j.issn.1673-193x.2022.10.015]
 CAO Yali,LI Zhenlei,LIU Xudong,et al.Research on early-warning method of rockburst based on convolutional neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(11):101.[doi:10.11731/j.issn.1673-193x.2022.10.015]
[3]李波,李鹏,高莲,等.基于PCA-VMD-CNN的输电线路覆冰重量预测模型*[J].中国安全生产科学技术,2022,18(10):216.[doi:10.11731/j.issn.1673-193x.2022.10.032]
 LI Bo,LI Peng,GAO Lian,et al.Prediction model for weight of ice coating on transmission line based on PCA-VMD-CNN[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(11):216.[doi:10.11731/j.issn.1673-193x.2022.10.032]
[4]李子奇,蒋柱虎,王力,等.基于深度学习的工程结构损伤识别研究进展[J].中国安全生产科学技术,2022,18(12):43.[doi:10.11731/j.issn.1673-193x.2022.12.006]
 LI Ziqi,JIANG Zhuhu,WANG Li,et al.Research progress in damage identification of engineering structure based on deep learning[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(11):43.[doi:10.11731/j.issn.1673-193x.2022.12.006]
[5]曹梅,杨超宇.基于小波的CNN-LSTM-Attention瓦斯预测模型研究*[J].中国安全生产科学技术,2023,19(9):69.[doi:10.11731/j.issn.1673-193x.2023.09.010]
 CAO Mei,YANG Chaoyu.Research on CNN-LSTM-Attention gas prediction model based on wavelet[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(11):69.[doi:10.11731/j.issn.1673-193x.2023.09.010]
[6]凌晓,王昕越,郭凯,等.基于UNet模型燃气管道高后果区分割方法研究*[J].中国安全生产科学技术,2024,20(4):157.[doi:10.11731/j.issn.1673-193x.2024.04.022]
 LING Xiao,WANG Xinyue,GUO Kai,et al.Research on segmentation method for high-consequence areas of gas pipeline based on UNet model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(11):157.[doi:10.11731/j.issn.1673-193x.2024.04.022]
[7]王文标,时启衡,郝友维.基于改进SqueezeNet的火焰识别算法*[J].中国安全生产科学技术,2024,20(8):19.[doi:10.11731/j.issn.1673-193x.2024.08.003]
 WANG Wenbiao,SHI Qiheng,HAO Youwei.Flame recognition algorithm based on improved SqueezeNet[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(11):19.[doi:10.11731/j.issn.1673-193x.2024.08.003]
[8]梁学栋,王霞.考虑多利益相关群体偏好冲突的应急响应协同决策研究*[J].中国安全生产科学技术,2024,20(10):46.[doi:10.11731/j.issn.1673-193x.2024.10.006]
 LIANG Xuedong,WANG Xia.Research on collaborative decision-making of emergency response considering preference conflicts among multiple stakeholder groups[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(11):46.[doi:10.11731/j.issn.1673-193x.2024.10.006]
[9]程磊,张俊展,景国勋,等.基于YOLOv8的煤矿安全帽和安全背心检测算法*[J].中国安全生产科学技术,2025,21(2):115.[doi:10.11731/j.issn.1673-193x.2025.02.015]
 CHENG Lei,ZHANG Junzhan,JING Guoxun,et al.Detection algorithm of safety hat and safety vest in coal mine based on YOLOv8[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2025,21(11):115.[doi:10.11731/j.issn.1673-193x.2025.02.015]

备注/Memo

备注/Memo:
收稿日期: 2024-07-03
* 基金项目: 太原市关键核心技术攻关“揭榜挂帅”项目(2024TYJB0139)
作者简介: 解恒星,专科,工程师,主要研究方向为矿井通风与瓦斯防治。
通信作者: 董锦洋,博士研究生,主要研究方向为矿井智能通风。
更新日期/Last Update: 2024-11-28