|本期目录/Table of Contents|

[1]黄鹏,房志明,朱曼,等.基于SSD网络的电梯内电动自行车检测研究*[J].中国安全生产科学技术,2023,19(2):167-172.[doi:10.11731/j.issn.1673-193x.2023.02.023]
 HUANG Peng,FANG Zhiming,ZHU Man,et al.Research on detection of electric bicycles in elevator based on SSD network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(2):167-172.[doi:10.11731/j.issn.1673-193x.2023.02.023]
点击复制

基于SSD网络的电梯内电动自行车检测研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
19
期数:
2023年2期
页码:
167-172
栏目:
职业安全卫生管理与技术
出版日期:
2023-02-28

文章信息/Info

Title:
Research on detection of electric bicycles in elevator based on SSD network
文章编号:
1673-193X(2023)-02-0167-06
作者:
黄鹏房志明朱曼黄中意叶锐刘泳琪
(1.上海理工大学 管理学院,上海 200093;
2.中国建材国际工程集团有限公司,上海 200060)
Author(s):
HUANG Peng FANG Zhiming ZHU Man HUANG Zhongyi YE Rui LIU Yongqi
(1.School of Management,University of Shanghai for Science and Technology,Shanghai 200093,China;
2.China National Building Material International Engineering Group Co.,Ltd.,Shanghai 200060,China)
关键词:
消防安全深度学习电动自行车进电梯双摄检测SSD主干网络
Keywords:
fire safetydeep learning electric bicycles entering elevator dual-camera detection single shot multibox detector (SSD) backbone network
分类号:
X956;X913.4
DOI:
10.11731/j.issn.1673-193x.2023.02.023
文献标志码:
A
摘要:
为减少因电动自行车违规操作而造成的消防安全事故,杜绝电动自行车进电梯的违规行为,基于深度学习SSD目标检测网络,使用VGG16、EfficientNet、MobileNet 3种主干网络,研究SSD网络对电梯内电动自行车检测的可行性,分析比较3种网络的检测效果,并提出基于双摄的检测方法,进一步提高电梯场景下检测准确度,减少误检误报警。研究结果表明:SSD检测网络对电梯内电动自行车检测效果良好,其中SSD_MobileNet网络更适用于工业领域,双摄检测方法的检测准确率均大于90%。
Abstract:
In order to reduce the fire safety accidents caused by the illegal operation of electric bicycles and prevent theelectric bicycles from entering elevator,based on the deep learning single shot multibox detector (SSD)target detection network,three backbone networks of VGG16,EfficientNet and MobileNet were used to study the feasibility of applying SSD network on thedetection of electric bicycles in elevator.The detection effect of the three networks were analyzed and compared,and a dual-camera detection method was proposed to further improve the accuracy of detection in the elevator scene and reduce the false detection and alarm.The results showed that the SSD detection network had good effect on the detection of electric bicycles in the elevator,among which the SSDMobileNet network was more suitable for industrial application,and all the accuracy of dual-camera detection method reached 90%.

参考文献/References:

[1]徐栋.基于深度学习的电动车头盔佩戴检测系统的设计与实现[D].南京:南京邮电大学,2022.
[2]宋炜,傅贵.电动车火灾事故原因及预防措施分析[J].安全,2022,43(3):39-45. SONG Wei,FU Gui.Analysis on the causes and preventive measures of electric vehicle fire accidents[J].Safety & Security,2022,43(3):39-45.
[3]ARP A,MP A,SR A.Application of deep learning for object detection[J].Procedia Computer Science,2018,132(5):1706-1717.
[4]曹诗雨,刘跃虎,李辛昭.基于Fast R-CNN的车辆目标检测[J].中国图象图形学报,2017,22(5):671-677. CAO Shiyu,LIU Yuehu,LI Xinzhao.Vehicle target detection based on Fast R-CNN[J].Chinese Journal of Image and Graphics,2017,22 (5):671-677.
[5]吴晓凤,张江鑫,徐欣晨.基于Faster R-CNN的手势识别算法[J].计算机辅助设计与图形学学报,2018,30(3):468-476. WU Xiaofeng,ZHANG Jiangxin,XU Xinchen.Gesture recognition algorithm based on Faster R-CNN[J].Journal of Computer Aided Design and Graphics,2018,30 (3):468-476.
[6]罗元,王薄宇,陈旭.基于深度学习的目标检测技术的研究综述[J].半导体光电,2020,41(1):1-10. LUO Yuan,WANG Boyu,CHEN Xu.Research overview of target detection technology based on deep learning [J].Semiconductor Optoelectronics,2020,41 (1):1-10.
[7]黄健,张钢.深度卷积神经网络的目标检测算法综述[J].计算机工程与应用,2020,56(17):12-23. HUANG Jian,ZHANG Gang.Overview of target detection algorithm based on deep convolutional neural network [J].Computer Engineering and Application,2020,56 (17):12-23.
[8]GU S,LU D,YUE Y,et al.A new deep learning method based on AlexNet model and SSD model for tennis ball recognition[C]//IEEE 10th International Workshop on Computational Intelligence and Applications (IWCIA),Piscataway,2017.
[9]LI Y,HUANG H,XIE Q,et al.Research on a surface defect detection algorithm based on MobileNet-SSD[J].Applied Sciences,2018,8(9):1678-1695.
[10]李继超,郭聖煜,孔刘林,等.施工现场火焰检测和预警机器人设计及应用[J].中国安全科学学报,2021,31(4):141-146. LI Jichao,GUO Shengyu,KONG Liulin,et al.Design and application of flame detection and early warning robot on construction site [J].China Safety Science Journal,2021,31(4):141-146.
[11]TAN M,LEQ V.EfficientNet:rethinking model scaling for convolutional neural networks[C] //International Conference on Machine Learning (ICML),ML ResearchPress,2019:105-114.
[12]HOWARD A G,ZHU M,CHEN B,et al.MobileNets:efficient convolutional neural networks for mobile vision applications[C]//Proceedings of the European Conference on Computer Vision,Hawaii,2017.
[13]SIMONYANK,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].Computer Science,2015,10(1):1-14.
[14]LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision,Las Vegas,CVPR,2016.
[15]付鹏,姚建刚,龚磊.利用红外特征和Softmax回归识别绝缘子污秽等级[J].计算机工程与应用,2015,51(13):181-185. FU Peng,YAO Jiangang,GONG Lei.Identification of insulator fouling level using infrared features and softmax regression[J].Computer Engineering and Applications,2015,51(13):181-185.
[16]BAO Y,LIU Z,LUO Z,et al.Smooth group L1/2 regularization for pruning convolutional neural networks[J].Symmetry,2022,14(1):154-160.
[17]万磊,佟鑫,盛明伟,等.Softmax分类器深度学习图像分类方法应用综述[J].导航与控制,2019,18(6):1-9. WAN Lei,TONG Xin,SHENG Mingwei,et al.Overview of application of softmax classifier in deep learning image classification [J].Navigation and Control,2019,18 (6):1-9.
[18]中华人民共和国工业和信息化部.电动自行车安全技术规范:GB 17761—2018[S].北京:中国标准出版社,2018.
[19]BOCHKOVSKIY A,WANG C Y,LIAO H.YOLOv4:optimal speed and accuracy of object detection[C]//Proceedings of the European Conference on Computer Vision,Seattle,CVPR,2020.

相似文献/References:

[1]郝爱玲,王宗存,石宗维,等.大空间内封闭喷漆作业的火灾危险性及消防安全对策研究[J].中国安全生产科学技术,2011,7(5):72.
 HAO Ai-ling,Wang Zong-cun,SHI Zong-wei,et al.Research on fire hazard?analysis and fire safety measures of a large paint shop with enclosed paint-spraying operation[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(2):72.
[2]赵青华,杨匀波.贵州黔南州高层建筑消防安全调研与防火策略[J].中国安全生产科学技术,2011,7(7):125.
 ZHAO qing-hua YANG yun-bo.Study of fire safety and fire prevention strategy in high-rise buildings which in Guizhou Qiannan[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(2):125.
[3]李清江.建筑工地消防安全问题分析与对策[J].中国安全生产科学技术,2012,8(7):229.
 LI Qing jiang.Construction site fire safety analysis and countermeasures[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(2):229.
[4]陈海涛,仇九子,杨〓鹏,等.一种高层建筑楼、电梯疏散模型的模拟研究[J].中国安全生产科学技术,2012,8(10):48.
 CHEN Hai tao,QIU Jiu zi,YANG Peng,et al.Simulation study on the novel stairs and elevator evacuation model in the highrise building[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(2):48.
[5]张立红,陈海涛,杨鹏,等.心理迫切因素对行人疏散动力学的影响研究[J].中国安全生产科学技术,2013,9(6):79.[doi:10.11731/j.issn.1673-193x.2013.06.015]
 ZHANG Li hong,CHEN Hai tao,YANG Peng,et al.Study on influence of psychological urgency parameter on pedestrian evacuation dynamics[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(2):79.[doi:10.11731/j.issn.1673-193x.2013.06.015]
[6]谭伟峰.城市公共消防安全风险预警评价体系构建研究[J].中国安全生产科学技术,2014,10(5):120.[doi:10.11731/j.issn.1673-193x.2014.05.021]
 TAN Weifeng.Study on construction of early-warning and evaluation system for public fire safety risk in city[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(2):120.[doi:10.11731/j.issn.1673-193x.2014.05.021]
[7]张立红,王策源,杨光,等.基于行人疏散模型的建筑出口设计优化研究[J].中国安全生产科学技术,2014,10(10):100.[doi:10.11731/j.issn.1673-193x.2014.10.017]
 ZHANG Li-hong,WANG Ce-yuan,YANG Guang,et al.Study on optimization of building exits design based on pedestrian evacuation model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(2):100.[doi:10.11731/j.issn.1673-193x.2014.10.017]
[8]刘勇,徐志胜,赵望达.商业综合体人员密度调查与分析[J].中国安全生产科学技术,2015,11(5):175.[doi:10.11731/j.issn.1673-193x.2015.05.028]
 LIU Yong,XU Zhi-sheng,ZHAO Wang-da.Investigation and analysis on personnel density in commercial complex[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(2):175.[doi:10.11731/j.issn.1673-193x.2015.05.028]
[9]涂思羽,彭平安,蒋元建.基于深度学习的井下环境异常工况智能识别技术研究[J].中国安全生产科学技术,2018,14(11):58.[doi:10.11731/j.issn.1673-193x.2018.11.009]
 TU Siyu,PENG Pingan,JIANG Yuanjian.Research on intelligent recognition technology of abnormal operating conditions in underground environment based on deep learning method[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(2):58.[doi:10.11731/j.issn.1673-193x.2018.11.009]
[10]刘欣宜,张宝峰,符烨,等.基于深度学习的污染场地作业人员着装规范性检测[J].中国安全生产科学技术,2020,16(7):169.[doi:10.11731/j.issn.1673-193x.2020.07.027]
 LIU Xinyi,ZHANG Baofeng,FU Ye,et al.Detection on normalization of operating personnel dressing at contaminated sites based on deep learning[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(2):169.[doi:10.11731/j.issn.1673-193x.2020.07.027]

备注/Memo

备注/Memo:
收稿日期: 2022-06-11
* 基金项目: 国家自然科学基金项目(72074149);上海市扬帆计划项目(21YF1431200)
作者简介: 黄鹏,硕士研究生,主要研究方向为公共安全、计算机视觉。
通信作者: 房志明,博士,教授,主要研究方向为突发事件下人群安全动力学、公共安全。
更新日期/Last Update: 2023-03-07