|本期目录/Table of Contents|

[1]周娇,彭星煜,曹军峰,等.基于ANSYS-PDS的含缺陷压力容器可靠性分析*[J].中国安全生产科学技术,2022,18(2):165-171.[doi:10.11731/j.issn.1673-193x.2022.02.025]
 ZHOU Jiao,PENG Xingyu,CAO Junfeng,et al.Reliability analysis of pressure vessel with defects based on ANSYS-PDS[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(2):165-171.[doi:10.11731/j.issn.1673-193x.2022.02.025]
点击复制

基于ANSYS-PDS的含缺陷压力容器可靠性分析*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
18
期数:
2022年2期
页码:
165-171
栏目:
职业安全卫生管理与技术
出版日期:
2022-02-28

文章信息/Info

Title:
Reliability analysis of pressure vessel with defects based on ANSYS-PDS
文章编号:
1673-193X(2022)-02-0165-07
作者:
周娇彭星煜曹军峰张杰东刘金玲姜雪
(1.中石化安全工程研究院有限公司,山东 青岛 266000;
2.西南石油大学 石油与天然气工程学院,四川 成都 610500;
3.中石油青海油田分公司监督监理公司,甘肃 酒泉 736200)
Author(s):
ZHOU Jiao PENG Xingyu CAO Junfeng ZHANG Jiedong LIU Jinling JIANG Xue
(1.SINOPEC Research Institute of Safety Engineering Co.,Ltd.,Qingdao Shandong 266000,China;
2.Petroleum Engineering School,Southwest Petroleum University,Chengdu Sichuan 610500,China;
3.Supervision Company of PetroChina Qinghai Oilfield Company,Jiuquan Gansu 736200,China)
关键词:
ANSYS-PDS含缺陷压力容器可靠性分析响应面法蒙特卡洛法抽样
Keywords:
ANSYS-PDS pressure vessel with defects reliability analysis response surface method Monte Carlo sampling
分类号:
X933.4
DOI:
10.11731/j.issn.1673-193x.2022.02.025
文献标志码:
A
摘要:
为更准确地分析含缺陷压力容器的可靠性,提出采用ANSYS软件中的PDS模块建模求解,从本质上克服API 581压力容器可靠性分析的局限性,采用将压力容器的内径、原始壁厚、缺陷深度、压力容器内压设置为服从正态分布的随机变量的方法,基于响应面法结合蒙特卡洛法抽样分析,通过编写APDL代码,探讨含缺陷压力容器的可靠性。结果表明:采用ANSYS-PDS建模求解压力容器的可靠性,比API 581更贴近压力容器现实工艺状态,可得到更为准确的可靠性分析结果;通过灵敏度分析可知,4个随机变量对该压力容器可靠性的影响程度及大小排序为:原始壁厚(59.43%)>压力容器内压(20.20%)>缺陷深度(17.96%)>压力容器内径(2.40%)。研究结果对含缺陷压力容器的安全管理具有重要意义。
Abstract:
In order to analyze the reliability of pressure vessel with defects more accurately,the PDS module in ANSYS software was innovatively used in the modeling and solving to essentially overcome the limitation of API 581 pressure vessel reliability analysis.The inner diameter,original wall thickness,defect depth and internal pressure of pressure vessel were set as the random variables subject to normal distribution,the reliability of pressure vessel with defects was discussed by writing APDL codes based on the response surface method and combined with the Monte Carlo sampling analysis.The results showed that using ANSYS-PDS modeling to solve the reliability of pressure vessels was closer to the actual process state of pressure vessels than API 581,and more accurate reliability analysis results could be obtained.According to the sensitivity analysis,the influence degree and size of the four random variables on the reliability of pressure vessel were as follows: original wall thickness (59.43%)>internal pressure of pressure vessel (20.20%)>defect depth (17.96%)>inner diameter of pressure vessel (2.40%).It is of great significance to realize the safe production and operation management of pressure vessels with defects.

参考文献/References:

[1]邢金朵,赵东风,韩丰磊,等.基于HAZOP与AEMA的输气站场风险评估[J].石油与天然气化工,2015,44(4):114-118.XING Jinduo,ZHAO Dongfeng,HAN Fenglei,et al.Risk assessment of gas transmission stations based on HAZOP and AEMA [J].Petroleum and Natural Gas Chemical Industry,2015,44(4):114-118.
[2]李铁钧,安伟光.基于人工神经网络的腐蚀管道可靠性分析[J].制造业信息,2005,12(5):106-107.LI Tiejun,AN Weiguang.Reliability analysis of corrosion pipeline based on artificial neural network [J].Manufacturing Information,2005,12(5):106-107.
[3]张镇,李著信.基于Bayes法的冻土地区输油管道可靠性评价[J].油气田地面工程,2008(5):26-27.ZHANG Zhen,LI Zhuxin.Reliability evaluation of oil pipelines in permafrost areas based on Bayes method [J].Surface Engineering of Oil and Gas Fields,2008(5):26-27.
[4]魏同锋,李丽茹.基于BP神经网络的腐蚀管道可靠性分析[J].石油化工腐蚀与防护,2010,27(6):24-26.WEI Tongfeng,LI Liru.Reliability analysis of corrosion pipeline based on BP neural network [J].Petrochemical Corrosion and Protection,2010,27(6):24-26.
[5]向彦楠.气田集气站可靠性评价技术研究[D].成都:西南石油大学,2011.
[6]白路遥,施宁,李亮亮,等.基于蒙特卡洛法的埋地悬空管道结构可靠度分析[J].西安石油大学学报,2016,31(5):48-52,59.BAI Luyao,SHI Ning,LI Liangliang,et al.Reliability analysis of buried suspended pipeline structure based on Monte Carlo method [J] Journal of Xi’an University of Petroleum,2016,31(5):48-52,59.
[7]吴云冬.高含硫天然气集输站场腐蚀可靠性研究[D].成都:西南石油大学,2017.
[8]王鹤男.兰成渝成品油管道L站系统可靠性分析[D].成都:西南石油大学,2019.
[9]American Petroleum Institute.Risk-based inspection methodology:API 581—2016[S].USA:American Petroleum Institute,2016.
[10]吕其宝,张明洋,陈丹霜,等.压力容器泄放过程建模与仿真分析[J].石油与天然气化工,2019,48(2):111-115,122.LYU Qibao,ZHANG Mingyang,CHEN Danshuang,et al.Modeling and simulation analysis of pressure vessel relief process [J].Petroleum and Natural Gas Chemical Industry,2019,48(2):111-115,122.
[11]姚安林,周立国,汪龙,等.天然气长输压力容器地区等级升级管理与风险评价[J].天然气工业,2017,37(1):124-130.YAO Anlin,ZHOU Liguo,WANG Long,et al.Regional level upgrade management and risk assessment of pressure vessels for long-distance natural gas transmission [J].Natural Gas Industry,2017,37(1):124-130.
[12]张淑丽.高含硫天然气集输压力容器可靠性评估方法研究[D].青岛:中国石油大学,2018.
[13]李军,秦朝葵,马洪敬.城市高压燃气管道的结构可靠性分析[J].中国安全生产科学技术,2014,10(11):113-118.LI Jun,QIN Chaokui,MA Hongjing.Analysis on structural reliability of urban high-pressure gas pipeline[J].Journal of Safety Science and Technology,2014,10(11):113-118.
[14]刘健,宋娟,张强勇,等.盐岩地下储库运行期失效概率分析[J].重庆大学学报,2011,34(12):144-150.LIU Jian,SONG Juan,ZHANG Qiangyong,et al.Failure probability analysis of salt rock underground storage during operation period [J].Journal of Chongqing University,2011,34(12):144-150.
[15]刘征宇.基于响应面法的机械可靠性设计与仿真方法研究[J].环境技术,2020,38(2):52-56,81.LIU Zhengyu.Research on mechanical reliability design and simulation method based on response surface methodology [J].Environmental Technology,2020,38(2):52-56,81.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2021-03-06
* 基金项目: 中国石化科技部项目(A-561)
作者简介: 周娇,硕士,助理工程师,主要研究方向为油气储运安全工程与可靠性工程。
更新日期/Last Update: 2022-03-18