|本期目录/Table of Contents|

[1]吴雪琴,廖斌.基于疲劳模式识别的VDT作业工间休息机制*[J].中国安全生产科学技术,2021,17(3):169-174.[doi:10.11731/j.issn.1673-193x.2021.03.026]
 WU Xueqin,LIAO Bin.Break mechanism of VDT continuous operation based on fatigue pattern recognition[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(3):169-174.[doi:10.11731/j.issn.1673-193x.2021.03.026]
点击复制

基于疲劳模式识别的VDT作业工间休息机制*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
17
期数:
2021年3期
页码:
169-174
栏目:
职业安全卫生管理与技术
出版日期:
2021-03-31

文章信息/Info

Title:
Break mechanism of VDT continuous operation based on fatigue pattern recognition
文章编号:
1673-193X(2021)-03-0169-06
作者:
吴雪琴廖斌
(1.电子科技大学 成都学院 计算机系,四川 成都 611731;
2.四川师范大学 商学院,四川 成都 610101)
Author(s):
WU Xueqin LIAO Bin
(1.Computer Department,Chengdu College of University of Electronic Science and Technology,Chengdu Sichuan 611731,China;
2.School of Business,Sichuan Normal University,Chengdu Sichuan 610101,China)
关键词:
BP神经网络模式识别VDT持续作业疲劳工间休息
Keywords:
BP neural network pattern recognition VDT Continuous operation fatigue break
分类号:
X913.4
DOI:
10.11731/j.issn.1673-193x.2021.03.026
文献标志码:
A
摘要:
为保障作业人员身心健康和作业效率,运用E-Prime软件模拟认知性VDT持续作业,通过方差分析提出作业疲劳综合评价指标体系,并使用客观绩效指标和生理指标作为输入变量,主观疲劳综合指数作为输出变量,训练BP神经网络,对作业疲劳进行模式识别;提出认知性VDT持续作业工间休息机制。结果表明:通过正确反应时间、注视时间、瞳孔直径、眨眼频率4项指标,对VDT持续作业疲劳进行模式识别的结果可信度较高。因此,基于上述4项指标提出的工间休息机制客观有效。
Abstract:
In order to ensure the physical and mental health and work efficiency of the employees of the cognitive visual display terminal (VDT),the break mechanism was studied.The EPrime software was used to design the experiments to simulate the cognitive VDT continuous operation,and a comprehensive evaluation index system was proposed for the work fatigue through the analysis of variance.The objective performance indexes and physiological indexes were taken as the input variables,and the subjective fatigue comprehensive index was taken as the output variable.Then the BP neural network was trained,and the pattern recognition on work fatigue was conducted.The break mechanism of cognitive VDT continuous operation was proposed based on the pattern recognition results.The results showed that the results of pattern recognition on the work fatigue of VDT continuous operation were reliable through four indexes of correct reaction time,fixation time,pupil diameter and blink frequency,and the proposed break mechanism was objective and effective.

参考文献/References:

[1]女职工劳动保护特别规定[J].职业卫生与应急救援,2012,30(3):115.
[2]中国化学工业部.化学矿山工业卫生管理规定[S].北京:中国化学工业部,1991.
[3]GRAJEWSKI B,SCHNORR T,REEFHUIS J,et al.Work with video display terminals and the risk of reduced birthweight and preterm birth[J].American Journal Industrial Medicine,1997,32(6):681-688.
[4]彭晓武,王正伦,张非若,等.视频显示终端作业工间休息制度的探讨[J].中国职业医学,2006,33(6):429-431. PENG Xiaowu,WANG Zhenglun,ZHANG Feiruo,et al.Experimental study on the break schedule for VDT task[J].China Occupational Medicine,2006,33(6):429-431.
[5]徐凯宏,王述洋,宋春明.合理构建视频显示终端(VDT)作业疲劳工间休息制度[J].中国安全科学学报,2009,19(4):26-31. XU Kaihong,WANG Shuyang,SONG Chunming.Reasonable construction of work-rest schedule for VDT work fatigue[J].China Safety Science Journal,2009,19(4):26-31.
[6]廖斌,冯海芹,罗俊浩,等.基于模糊评价的人机交互型VDT持续作业工间休息[J].中国安全科学学报,2018,28(4):72-77. LIAO Bin,FENG Haiqin,LUO Junhao,et al.Experimental research on the break schedule for human-computer interactive VDT continuous operation based on fuzzy evaluation[J].China Safety Science Journal,2018,28(4):72-77.
[7]丁玉兰.人因工程学[M].北京:北京理工大学出版社,2013.
[8]王艳.VDT作业疲劳分析及其改善措施的研究[D].西安:西安建筑科技大学,2009.
[9]张欣茹.认知性监控作业心理负荷的多维评估及影响因素研究[D].杭州:浙江大学,2005.
[10]那赟,栗继祖,冯国瑞.高危岗位矿工心理倦怠对注意执行功能的影响[J].中国安全生产科学技术,2019,15(5):148-153. NA Yun,LI Jizu,FENG Guorui.Influence of psychological burnout for miners at high risk posts on attention executive function[J].Journal of Safety Science and Technology,2019,15(5):148-153.
[11]靳慧斌,陈健,刘文辉,等.眼动指标在实时测量心理负荷中的应用进展[J].科学技术与工程,2015,15(30):79-85. JIN Huibin,CHEN Jian,LIU Wenhui,et al.Development of eye movement index in real-time evaluation of mental workload[J].Science Technology and Engineering,2015,15(30):79-85.
[12]胡瑾秋,张来斌,胡静桦.基于视线追踪技术的工艺操作人员人为失误识别研究[J].中国安全生产科学技术,2019,15(5):142-147. HU Jinqiu,ZHANG Laibin,HU Jinghua.Study on human error recognition of process operators based on eye tracking technology[J].Journal of Safety Science and Technology,2019,15(5):142-147.
[13]张力,陈文,蒋建军.基于DPSIR和BP神经网络的安全绩效评估模型[J].中国安全科学学报,2014,24(12):76-82. ZHANG Li,CHEN Wen,JIANG Jianjun.Safety performance evaluation model based on DPSIR and BP neural network[J].China Safety Science Journal,2014,24(12):76-82.
[14]李金波,许百华,田学红.人机交互中认知负荷变化预测模型的构建[J].心理学报,2010,42(5):359-368. LI Jinbo,XU Baihua,TIAN Xuehong.Construction of prediction models of cognitive load in human-machine interaction process[J].Acta Psychologica Sinica,2010,42(5):359-368.
[15]杨继星,佘笑梅,黄玉钏,等.基于BP神经网络的苯储罐泄漏事故风险评价模型研究[J].中国安全生产科学技术,2019,15(1):157-162. YANG Jixing,SHE Xiaomei,HUANG Yuchuan,et al.Research on risk assessment model for leakage accident of benzene tank based on BP neural network[J].Journal of Safety Science and Technology,2019,15(1):157-162.

相似文献/References:

[1]汪送,王瑛,李超.BP神经网络在航空机务人员本质安全程度评价中的应用[J].中国安全生产科学技术,2010,6(6):35.
[2]罗景峰,许开立.基于可变模糊组合方法的瓦斯涌出量预测[J].中国安全生产科学技术,2011,7(6):29.
 LUO Jing-feng,XU Kai-li.Gas Emission Rate Forecast Based on variable fuzzy Combination method [J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(3):29.
[3]李德顺,宫博,许开立.石化企业火灾危险性模式识别模型研究[J].中国安全生产科学技术,2012,8(4):122.
 LI De shun,GONG Bo,XU Kai li.Research on risk pattern recognition model of fire inpetrochemical enterprise[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(3):122.
[4]王悦,薛伟.基于BP神经网络的东北贮木场火灾危险等级评定[J].中国安全生产科学技术,2013,9(2):173.
 WANG Yue,XUE Wei.Evaluation of fire danger rating of northeast lumberyard based on BP neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(3):173.
[5]孙赟,李明涛,姚晓晖.基于BP神经网络人群流量预测的实现[J].中国安全生产科学技术,2010,6(2):61.
 SUN Yun,LI Ming-tao,YAO Xiao-hui.Imphement of crowd flow prediction based on BP neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(3):61.
[6]高宗军,付青,郑秋霞,等.BP和Elman神经网络在砂土液化预测中的研究[J].中国安全生产科学技术,2013,9(6):58.[doi:10.11731/j.issn.1673-193x.2013.06.011]
 GAO Zong jun,FU Qing,ZHENG Qiu xia,et al.Study on forecasting of sand liquefaction by using BP neural and Elamn neural networks[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(3):58.[doi:10.11731/j.issn.1673-193x.2013.06.011]
[7]易高翔,潘长城,郭建中,等.基于多源数据融合的石油罐区安全监控模型[J].中国安全生产科学技术,2014,10(3):90.[doi:10.11731/j.issn.1673-193x.2014.03.015]
 YI Gao xiang,PAN Chang cheng,GUO Jian zhong,et al.Study on safety monitoring model of petroleum tank farm based on multisource data fusion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(3):90.[doi:10.11731/j.issn.1673-193x.2014.03.015]
[8]陈建宏,郑荣凯,陈 浩.基于PCA和BP神经网络边坡稳定性分析[J].中国安全生产科学技术,2014,10(5):142.[doi:10.11731/j.issn.1673-193x.2014.05.023]
 CHEN Jianhong,ZHENG Rongkai,CHEN Hao.Analysis on slope stability based on combination of PCA and BP neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(3):142.[doi:10.11731/j.issn.1673-193x.2014.05.023]
[9]宋新明,居 勇,曾 鸣,等.基于神经网络的供电企业安全文化评价研究*[J].中国安全生产科学技术,2009,5(4):55.
 SONG Xin ming,JU Yong,ZENG Ming,et al.Research on the evaluation of power supply enterprises safety culture based on neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(3):55.
[10]刘业娇,田志超,刘进才.BP神经网络在矿井本质安全程度评价中的应用[J].中国安全生产科学技术,2009,5(5):102.
 LIU Ye jiao,TIAN Zhi chao,LIU Jin cai.Application of BP neural network in the field of evaluation on intrinsical safety degree in mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(3):102.
[11]刘恩斌,温櫂荣,郭冰燕,等.基于声信号特征分析的燃气管道探测识别方法*[J].中国安全生产科学技术,2022,18(4):61.[doi:10.11731/j.issn.1673-193x.2022.04.009]
 LIU Enbin,WEN Zhaorong,GUO Bingyan,et al.Detection and recognition methods of gas pipelines based on acoustic signal feature analysis[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(3):61.[doi:10.11731/j.issn.1673-193x.2022.04.009]

备注/Memo

备注/Memo:
收稿日期: 2020-08-27
* 基金项目: 教育部人文社会科学研究规划基金项目(19YJAZH051);四川省软科学研究计划项目(2020JDR0267)
作者简介: 吴雪琴,硕士,副教授,主要研究方向为软件技术、嵌入式技术、智能计算。
通信作者: 廖斌,硕士,副教授,主要研究方向为人机交互作业绩效及可靠性。
更新日期/Last Update: 2021-04-13