[1]刘剑,郭欣,邓立军,等.基于风量特征的矿井通风系统阻变型单故障源诊断[J].煤炭学报,2018,43(1):143-149.
LIU Jian,GUO Xin,DENG Lijun,et al.Resistance variant single fault source diagnosis of mine ventilation system based on air volume characteristic[J].Journal of China Coal Society,2018,43( 1):143-149.
[2]周启超,刘剑,刘丽,等.基于SVM的通风系统故障诊断惩罚系数与核函数系数优化研究[J].中国安全生产科学技术,2019,15(4):45-51.
ZHOU Qichao,LIU Jian,LIU Li,et al.Study on optimization of penalty coefficient and kernel function coefficient of ventilation system fault diagnosis based on SVM [J].Journal of Safety Science and Technology,2019,15 (4):45-51.
[3]龚晓燕,孙晓辉.基于遗传算法的矿井局部通风故障诊断神经网络模型[J].煤矿安全,2008,39(5):35-38.
GONG Xiaoyan,SUN Xiaohui.Neural network model for fault diagnosis of mine local ventilation based on genetic algorithm [J].Coal Mine Safety,2008,39(5):35-38.
[4]胡青伟.大平煤矿通风系统异常诊断研究[D].徐州:中国矿业大学,2019.
[5]潘竟涛,赵丹,李宗翔,等.大明矿通风系统故障源诊断及风速传感器的布置[J].煤炭学报,2013,38(S1):153-158.
PAN Jingtao,ZHAO Dan,LI Zongxiang,et al.Fault source diagnosis of ventilation system and arrangement of wind speed sensor in Daming mine [J].Journal of China Coal Society,2013,38 (S1):153-158.
[6]赵丹.基于网络分析的矿井通风系统故障源诊断技术研究[D].阜新:辽宁工程技术大学,2011.
[7]赵丹,陈帅,潘竞涛.基于FTA的矿井监控预警诊断知识表示及推理机制[J].中国安全生产科学技术,2015,11(6):38-43.
ZHAO Dan,CHEN Shuai,PAN Jingtao.Knowledge representation and reasoning mechanism of mine monitoring and early warning diagnosis based on FTA [J].Journal of Safety Science and Technology,2015,11 (6):38-43.
[8]赵丹,陈帅,潘竞涛.矿井监控预警诊断系统研究[J].中国安全科学学报,2015,25(4):63-69.
ZHAO Dan,CHEN Shuai,PAN Jingtao.Research on mine monitoring,early warning and diagnosis system [J].Chinese Journal of Safety Sciences,2015,25 (4):63-69.
[9]赵丹,陈占君,王东,等.RBF神经网络的矿井风速故障源[J].辽宁工程技术大学学报(自然科学版),2013,32(6):749-753.
ZHAO Dan,CHEN Zhanjun,WANG Dong,et al.RBF neural network fault source of mine wind speed [J].Journal of Liaoning University of Engineering and Technology (Natural Science Edition),2013,32 (6):749-753.
[10]ZHU Yongli,HUO Limin,LU Jinling.Bayesian networks-based approach for power systems fault diagnosis[J].IEEE Transactions on Power Delivery,2006,21(2):634-639.
[11]FEI S W,ZHANG X B.Fault diagnosis of power transformer based on support vector machine with genetic algorithm[J].Expert Systems with Applications,2009,36(8):11352-11357.
[12]李孝全,庄德慧,张强.基于粗糙径向基神经网络的电网故障诊断新模型[J].电力系统保护与控制,2009,37(18):20-24.
LI Xiaoquan,ZHUANG Dehui,ZHANG Qiang.A new fault diagnosis model for power network based on rough radial basis function neural network [J].Protection and Control of Power System,2009,37 (18):20-24.
[13]袁圃,毛剑琳,向凤红,等.改进的基于遗传优化BP神经网络的电网故障诊断[J].电力系统及其自动化学报,2017,29(1):118-122.
YUAN Pu,MAO Jianlin,XIANG Fenghong,et al.Improved fault diagnosis of power network based on genetic optimization BP neural network [J].Journal of Power System and Automation,2017,29 (1):118-122.
[14]廉毅.GIS环境下天然气管网故障诊断系统研究[D].重庆:重庆大学,2005.
[15]陈泉博.燃气管网泄漏工况分析及故障诊断[D].哈尔滨:哈尔滨工业大学,2008.
[16]XU Q Q,ZHANG L B,WEI L.Acoustic detection technology for gas pipe-line leakage[J].Process Safety and Environmental Protection,2013,91(4):253-261.
[17]KAPELAN Z S,SAVIC D A,WALTERS G A.A hybrid inverse transient model for leakage detection and roughness calibration in pipe networks[J].Journal of Hydraulic Research,2003,41(5):481-492.
[18]VI' TKOVSKY` J P,LIGGETT J A,SIMPSON A R,et al.Optimal measurement site locations for inverse transient analysis in pipe networks[J].Journal of Water Resources Planning and Management,2003,129(6):480-492.
[19]MASHFORD J,DE S D,MARNEY D,et al.An approach to leak detection in pipe networks using analysis of monitored pressure values by support vector machine[C]//2009 Third International Conference on Network and System Security,2009.
[20]LEI C H,ZOU P H.Two-stage BP neural network leakage fault diagnosis of heating networks[J].Journal of Harbin Institute of Technology,2011,43(2):75-79.
[21]雷翠红.供热管网泄漏故障诊断的研究[D].哈尔滨:哈尔滨工业大学,2010.
[22]周守军,郭敏,孙浩森,等.热水集中供热管网泄漏故障诊断模型[J].山东大学学报(工学版),2013,43(4):105-110.
ZHOU Shoujun,GUO Min,SUN Haosen,et al.Leakage fault diagnosis model of hot water central heating network [J].Journal of Shandong University (Engineering Edition),2013,43 (4):105-110.
[23]刘剑,李雪冰,宋莹,等.基于速度场系数的主通风机风量单点统计测量方法[J].有色金属工程,2018,8(2):114-117.
LIU Jian,LI Xuebing,SONG Ying,et al.Single-point statistical measurement method for air volume of main fan based on velocity field coefficient [J].Nonferrous Metal Engineering,2018,8 (2):114-117.
[1]章能胜,张黔生,谢贤平,等.三种确定矿井通风系统设计方案评价指标权重的方法比较[J].中国安全生产科学技术,2012,8(12):38.
ZHANG Neng sheng,ZHANG Qian sheng,XIE Xian ping,et al.Comparative study on three methods for the evaluation index weight of design scheme on mine ventilation system[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(1):38.
[2]韩艳杰,张志军,李亚俊.基于新型综合集成法的矿井通风系统安全评价[J].中国安全生产科学技术,2014,10(2):75.[doi:10.11731/j.issn.1673-193x.2014.02.013]
HAN Yan jie,ZHANG Zhi jun,LI Ya jun.Evaluation of mine ventilation system safety based on new comprehensive integrated method[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(1):75.[doi:10.11731/j.issn.1673-193x.2014.02.013]
[3]程刚,陆卫东,陈志峰,等.基于FAHP-MODM的矿井通风系统可靠性综合评价[J].中国安全生产科学技术,2018,14(2):99.[doi:10.11731/j.issn.1673-193x.2018.02.016]
CHENG Gang,LU Weidong,CHEN Zhifeng,et al.Comprehensive evaluation on reliability of ventilation system in mine based on FAHP-MODM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(1):99.[doi:10.11731/j.issn.1673-193x.2018.02.016]
[4]马恒,苗倩斐,韩宝华,等.矿井通风系统稳定性SD预测仿真分析[J].中国安全生产科学技术,2019,15(12):108.[doi:10.11731/j.issn.1673-193x.2019.12.018]
MA Heng,MIAO Qianfei,HAN Baohua,et al.SD prediction and simulation analysis on stability of mine ventilation system[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(1):108.[doi:10.11731/j.issn.1673-193x.2019.12.018]
[5]邵良杉,张佳琦,于保才,等.基于TF-熵权法的矿井通风系统可靠性可拓评价*[J].中国安全生产科学技术,2022,18(4):106.[doi:10.11731/j.issn.1673-193x.2022.04.015]
SHAO Liangshan,ZHANG Jiaqi,YU Baocai,et al.Extension evaluation on reliability of mine ventilation system based on TF-entropy weight method[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(1):106.[doi:10.11731/j.issn.1673-193x.2022.04.015]