|本期目录/Table of Contents|

[1]卢子涵,胡啸峰,邱凌峰.基于机器学习的侵财类案件危害程度分析[J].中国安全生产科学技术,2019,15(12):29-35.[doi:10.11731/j.issn.1673-193x.2019.12.005]
 LU Zihan,HU Xiaofeng,QIU Lingfeng.Analysis on hazard degree of cases of encroaching on property based on machine learning[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(12):29-35.[doi:10.11731/j.issn.1673-193x.2019.12.005]
点击复制

基于机器学习的侵财类案件危害程度分析
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
15
期数:
2019年12期
页码:
29-35
栏目:
特邀专栏
出版日期:
2019-12-31

文章信息/Info

Title:
Analysis on hazard degree of cases of encroaching on property based on machine learning
文章编号:
1673-193X(2019)-12-0029-07
作者:
卢子涵胡啸峰邱凌峰
( 1.中国人民公安大学 信息技术与网络安全学院,北京 102623;
2.安全防范技术与风险评估公安部重点实验室,北京 102623;
3.上海云从企业发展有限公司 中台产品中心-公共事业组,上海200120)
Author(s):
LU Zihan HU Xiaofeng QIU Lingfeng
(1.School of Information Technology and Cyber Security,People’s Public University of China,Beijing 102623,China;
2.Key Laboratory of Security Technology & Risk Assessment,Ministry of Public Security,Beijing 102623,China;
3.Middleend Product CenterPublic Utility Group,Shanghai Yunshang Technology,Shanghai 200120,China)
关键词:
侵财类案件机器学习分类预测
Keywords:
cases of encroaching on property machine learning classification prediction
分类号:
X913
DOI:
10.11731/j.issn.1673-193x.2019.12.005
文献标志码:
A
摘要:
为了进一步分析侵财类案件的危害程度,以抢劫、抢夺和盗窃3种典型侵财类案件为例,利用ZS市2008—2014年的犯罪数据与统计年鉴数据,提取“发案时间”“发案地域”“选择时机”“选择处所”“选择对象”“人均地区生产总值”“职工月平均工资”7个特征,建立基于多种机器学习分类算法的侵财类案件危害程度预测模型,并进一步开展预测结果的分析研究。研究结果表明:梯度提升决策树(GBDT)算法性能最优,危害程度预测准确率达到了0.88;在抢劫案和抢夺案中,一般和重大的案件容易发生在繁华地带,特大案件容易发生在其他处所;侵财类案件倾向于在工作日的城区中发生,发生的危害程度大多为一般;提出的侵财类案件危害程度预测模型可为侵财类案件的风险评估及警务资源优化配置工作提供方法支持。
Abstract:
In order to further analyze the hazard degree of the cases of encroaching on property,taking three kinds of typical cases of encroaching on property including the robbery,forcible seizure and theft as the examples,based on the crime data and statistical yearbook data of ZS city from 2008 to 2014,multiple characteristics such as “time of case incidence”,“region of case incidence”,“time of choice”,“place of choice”,“object of choice”,“per capita GDP”,“average monthly salary of employees” were extracted,then a prediction model on the hazard degree of the cases of encroaching on property based on multiple machine learning classification algorithms,and the prediction results were further analyzed.The results showed that the gradient boosting decision tree (GBDT) algorithm had the best performance,and the prediction accuracy of hazard degree reached 0.88.In the cases of robbery and forcible seizure,the general and major cases were prone to occur in the prosperous areas,and the extraordinary cases were likely to occur in other places.The cases of encroaching on property were more likely to occur in urban areas on the working days,and the hazard degrees were mostly general.The proposed prediction model on the hazard degree of the cases of encroaching on property can provide the methodological support for the risk assessment and optimal allocation of police resources on the cases of encroaching on property.

参考文献/References:

[1]张萍,肖亚麟.当前多发性侵财类犯罪的特点及打防研究[J].武汉公安干部学院学报,2015,29(3):29-33. ZHANG Ping,XIAO Yalin.The characteristics and prevention of current multi-invasion crimes[J].Journal of Wuhan Public Security Cadre College.2015,29(3):29-33.
[2]CATLETT C,CESARIO E,TALIA D,et al.Spatio-temporal crime predictions in smart cities:A data-driven approach and experiments[J].Pervasive and Mobile Computing,2019(53):62-74.
[3]邱明月,王新猛,唐松泽.基于人工神经网络模型的抢劫犯罪微观研究[J].信息技术与信息化,2018(10):140-143. QIU Mingyue,WANG Xinmeng,TANG Songze.Microcosmic study of robbery crime based on artificial neural network model[J].Information Technology and Information Technology,2018(10):140-143.
[4]吕雪梅.数据驱动:侵财犯罪治理策略转向[J].山东警察学院学报,2017,29(4):102-108. LYU Xuemei.Datadriven:Governance strategy of invasion of crimes[J].Journal of Shandong Police College,2017,29(4):102-108.
[5]李卫红,闻磊,陈业滨.改进的GA-BP神经网络模型在财产犯罪预测中的应用[J].武汉大学学报(信息科学版),2017,42(8):1110-1116,1171. LI Weihong,WEN Lei,CHEN Yebin.Application of improved GA-BP neural network model in property crime prediction [J].Journal of Wuhan University(Information Science Edition),2017,42(8):1110-1116,1171.
[6]孙菲菲,曹卓,肖晓雷.基于随机森林的分类器在犯罪预测中的应用研究[J].情报杂志,2014,33(10):148-152. SUN Feifei,CAO Zhuo,XIAO Xiaolei.Application of classifier based on random forest in crime prediction[J].Journal of Information,2014,33(10):148-152.
[7]石拓,蒋伟,张晶晶,等.基于集成特征选择的盗窃案件预测方法[J].北京理工大学学报,2018,38(9):985-990. SHI Tuo,JIANG Wei,ZHANG Jingjing,et al.The prediction method of theft case based on integrated feature selection[J].Journal of Beijing Institute of Technology,2018,38(9):985-990.
[8]邱凌峰,胡啸峰,周睿,等.基于机器学习的典型社会安全事件发生规律研究及对雄安新区的启示[J].中国安全生产科学技术,2018,14(10):11-17. QIU Lingfeng,HU Xiaofeng,ZHOU Rui,et al.Study on the law of typical social security incidents based on machine learning and its enlightenment to Xiong'an New District[J].Journal of Safety Science and Technology,2018,14(10):11-17.
[9]胡啸峰.热应力对犯罪活动的影响规律研究[J].中国人民公安大学学报(自然科学版),2018,24(3):58-62. HU Xiaofeng.Study on the influence law of thermal stress on criminal activities[J].Journal of Chinese People's Public Security University(Natural Science Edition),2018,24(3):58-62.
[10]HUX,WU J,CHEN P,et al.Impact of climate variability and change on crime rates in Tangshan,China[J].Science of the Total Environment,2017,609:1041-1048.
[11]HU X,CHEN P,HUANG H,et al.Contrasting impacts of heat stress on violent and nonviolent robbery in Beijing,China[J].Natural Hazards,2017,87(2):961-972.
[12]李宜清,程武山.融合PCA的支持向量机人脸检测研究[J].计算机测量与控制,2019,27(3):49-54. LI Yiqing,CHENG Wushan.Study onface detection of support vector machine based on PCA[J].Computer Measurement & Control,2019,27(3):49-54.
[13]孙平安,王备战.机器学习中的PCA降维方法研究及其应用[J].湖南工业大学学报,2019,33(1):80-85. SUN Pingan,WANG Beizhan.Research and application of PCA dimensionality reduction method in machine learning [J].Journal of Hunan University of Technology,2019,33(1):80-85.
[14]CHAWLA N,JAPKOWICZ N,KOTCZ A,et al.Specialissue on learning from imbalanced data sets [J].ACM SIGKDD Explorations Newsletter,2004,6(1):1-6.
[15]CHAWLA N V,BOWYER K W,HALL L O,et al.SMOTE:Synthetic minority over-sampling technique[J].Journal of Artificial Intelligence Research,2002,16(1):321-357.
[16]BATISTA G E A P A,PRATI R C,MONARD M C.A study of the behavior of several methods for balancing machine learning training data[J].ACM SIGKDD Explorations Newsletter,2004,6(1):20.
[17]李英杰,王芮.试论基于数据挖掘Apriori算法实现与应用[J].吉林工程技术师范学院学报,2019,35(4):89-91. LI Yingjie,WANG Rui.On the implementation and application of apriori algorithm based on data mining[J].Journal of Jilin Engineering and Technology Teachers College,2019,35(4):89-91.
[18]张亚洲.改进型Apriori算法在犯罪关联分析中的应用[J].无线互联科技,2013(9):148-149. ZHANG Yazhou.Application of improved apriori algorithm in criminal correlation analysis[J].Wireless Interconnect Technology,2013(9):148-149.
[19]常宇刚.城镇化进程中的犯罪问题实证分析[D].重庆:西南政法大学,2015.

相似文献/References:

[1]张雪蕾,汪明,曹寅雪,等.3种典型机器学习方法在灾害敏感性评估中的对比[J].中国安全生产科学技术,2018,14(7):79.[doi:10.11731/j.issn.1673-193x.2018.07.012]
 ZHANG Xuelei,WANG Ming,CAO Yinxue,et al.Comparison of three typical machine learning methods in susceptibility assess-ment of disasters[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(12):79.[doi:10.11731/j.issn.1673-193x.2018.07.012]
[2]邱凌峰,胡啸峰,周睿,等.基于机器学习的典型社会安全事件发生规律研究及对雄安新区的启示[J].中国安全生产科学技术,2018,14(10):11.[doi:10.11731/j.issn.1673-193x.2018.10.002]
 QIU Lingfeng,HU Xiaofeng,ZHOU Rui,et al.Research on the occurrence regularity of typical social security incidents based on machine learning and implications for Xiongan New Area[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(12):11.[doi:10.11731/j.issn.1673-193x.2018.10.002]
[3]杨莉琼,蔡利强,古松.基于机器学习方法的安全帽佩戴行为检测[J].中国安全生产科学技术,2019,15(10):152.[doi:10.11731/j.issn.1673-193x.2019.10.024]
 YANG Liqiong,CAI Liqiang,GU Song.Detection on wearing behavior of safety helmet based on machine learning method[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(12):152.[doi:10.11731/j.issn.1673-193x.2019.10.024]
[4]邱凌峰,韩昕格,胡啸峰.基于机器学习的恐怖袭击事件后果预测方法研究[J].中国安全生产科学技术,2020,16(1):175.[doi:10.11731/j.issn.1673-193x.2020.01.029]
 QIU Lingfeng,HAN Xinge,HU Xiaofeng.Study on method of consequence prediction for terrorist attacks based on machine learning[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(12):175.[doi:10.11731/j.issn.1673-193x.2020.01.029]
[5]徐鲁帅,凌晓,马娟娟,等.基于DE-BPNN模型的含腐蚀缺陷管道失效压力预测*[J].中国安全生产科学技术,2021,17(3):91.[doi:10.11731/j.issn.1673-193x.2021.03.014]
 XU Lushuai,LING Xiao,MA Juanjuan,et al.Prediction on failure pressure of pipeline containing corrosion defects based on DE-BPNN[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(12):91.[doi:10.11731/j.issn.1673-193x.2021.03.014]
[6]孙宝财,朱蔡文,凌晓.基于SVR的含缺陷管道剩余强度研究*[J].中国安全生产科学技术,2022,18(2):172.[doi:10.11731/j.issn.1673-193x.2022.02.026]
 SUN Baocai,ZHU Caiwen,LING Xiao.Research on residual strength of pipeline with defects based on SVR[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(12):172.[doi:10.11731/j.issn.1673-193x.2022.02.026]
[7]段在鹏,李帆,邱少辉,等.地铁沿线老旧房屋结构安全预警模型*[J].中国安全生产科学技术,2022,18(3):162.[doi:10.11731/j.issn.1673-193x.2022.03.025]
 DUAN Zaipeng,LI Fan,QIU Shaohui,et al.Early warning model for structural safety of old buildings along metro lines[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(12):162.[doi:10.11731/j.issn.1673-193x.2022.03.025]
[8]陈利成,陈建宏.基于数据填补-机器学习的煤与瓦斯突出预测效果研究*[J].中国安全生产科学技术,2022,18(9):69.[doi:10.11731/j.issn.1673-193x.2022.09.010]
 CHEN Licheng,CHEN Jianhong.Study on prediction effect of coal and gas outburst based on data imputation and machine learning[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(12):69.[doi:10.11731/j.issn.1673-193x.2022.09.010]
[9]马云路,郑坚钦,梁永图.基于特征提取的输油管道泄漏系数预测*[J].中国安全生产科学技术,2022,18(10):130.[doi:10.11731/j.issn.1673-193x.2022.10.019]
 MA Yunlu,ZHENG Jianqin,LIANG Yongtu.Prediction on leakage coefficient of oil pipeline based on feature extraction[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(12):130.[doi:10.11731/j.issn.1673-193x.2022.10.019]
[10]曹占华,袁海平,李恒喆.基于PCA-PNN的采空区多源指标危险性辨识*[J].中国安全生产科学技术,2022,18(12):104.[doi:10.11731/j.issn.1673-193x.2022.12.014]
 CAO Zhanhua,YUAN Haiping,LI Hengzhe.Multi-source indexes risk identification of goaf based on PCA-PN[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(12):104.[doi:10.11731/j.issn.1673-193x.2022.12.014]

备注/Memo

备注/Memo:
收稿日期: 2019-11-02
* 基金项目: 国家重点研发计划项目(2018YFC0809702);国家自然科学基金项目(71704183)
作者简介: 卢子涵,硕士研究生,主要研究方向为机器学习。
更新日期/Last Update: 2020-01-09