[1]刘剑,郭欣,邓立军,等. 基于风量特征的矿井通风系统阻变型单故障源诊断[J]. 煤炭学报,2018,43(1):143-149.
LIU Jian,GUO Xin,DENG Lijun,et al. Diagnosing single fault source diagnosis of mine ventilation system based on air volume characteristics[J]. Journal of China Coal Society, 2018, 43(1): 143-149.
[2]魏宁,孙亚胜男,邓立军,等.基于SVM的矿井通风阻力系数影响因素分析与预测[J].中国安全生产科学技术,2018,14(4):39-44.
WEI Ning,SUN Yasheng,DENG Lijun,et al.Analysis and prediction of influencing factors of mine ventilation resistance coefficient based on SVM[J].China Safety Science and Technology,2018,14(4):39-44.
[3]李凤,易俊,王文和,等.基于SVM的CO_2驱油藏输油管道脆弱性评价研究[J].中国安全生产科学技术,2015,11(8):157-163.
LI Feng,YI Jun,WANG Wenhe,et al. Study on vulnerability evaluation of oil pipeline of CO_2 flooding reservoir based on SVM[J].China Safety Science and Technology,2015,11(8):157-163.
[4]张明丽,姚继涛.基于支持向量机建筑施工安全预警模型的研究[J].中国安全生产科学技术,2011,7(3):58-60.
ZHANG Mingli,YAO Jitao.Study on construction safety early warning model based on support vector machine[J].China Safety Science and Technology,2011,7(3):58-60.
[5]施式亮,李润求,罗文柯.基于EMD-PSO-SVM的煤矿瓦斯涌出量预测方法及应用[J].中国安全科学学报,2014,24(7):43-49.
SHI Shiliang,LI Runqiu,LUO Wenke.A method for forecasting coal mine gas emission based on EMD-PSO-SVM and its application[J].China Safety Science Journal,2014,24(7):43-49.
[6]陈华舟,陈福,许丽莉,等.基于网格搜索的参数优化方法用于鱼粉灰分的近红外LSSVM定量分析[J].分析科学学报,2016,32(2):198-202.
CHEN Huazhou,CHEN Fu,XU Lili,et al.A quantitative analysis ofnear infrared LSSVM for fish ash by using parameter pptimization method based on grid search[J].Journal of Analytical Science,2016,32(2):198-202.
[7]高雷阜,赵世杰,高晶.人工鱼群算法在SVM参数优化选择中的应用[J].计算机工程与应用,2013,49(23):86-90.
GAO Leifu,ZHAO Shijie,GAO Jing.Application of artificial fish swarm algorithm in SVM parameter optimization selection[J].Computer Engineering and Applications,2013,49(23):86-90.
[8]王玉鑫,李东生,高杨.基于改进型花朵授粉算法的SVM参数优化[J].火力与指挥控制,2018,43(10):8-13.
WANG Yuxin,LI Dongsheng,GAO Yang.SVM parameter optimization based on improved flower pollination algorithm[J].Fire Control & Command Control,2018,43(10):8-13.
[9]邱正,钱玉良,张云,等.基于人工蜂群算法优化支持向量机的燃气轮机故障诊断[J].热能动力工程,2018,33(9):39-43,57.
QIU Zheng,QIAN Yuliang,ZHANG Yun,et al. Gas turbine fault diagnosis based on artificial bee colony algorithm optimized support vector machine[J]. Thermal Power Engineering,2018,33(9):39-43,57.
[10]肖海军,卢常景,何凡.基于鸟群算法的SVM参数选择[J].中南民族大学学报(自然科学版),2017,36(3):90-94.
XIAO Haijun,LU Changjing,HE Fan.SVM parameter selection based on bird group algorithm[J].Journal of South-Central University for Nationalities(Natural Science Edition),2017,36(3):90-94.
[11]ENACHE A C,SGARCIU V. Anomaly intrusions detection based on support vector machines with bat algorithm[C]//System Theory,Control and Computing (ICSTCC),2014 18th International Conference. IEEE,2014:856- 861.
[12]段艳艳.基于支持向量机的矿井风温预测[D].西安:西安科技大学,2013.
[13]孙玲.一种支持向量机参数选择方法的研究及应用[D].杭州:杭州电子科技大学,2017.
[14]颜晓娟,龚仁喜,张千锋.优化遗传算法寻优的SVM在短期风速预测中的应用[J].电力系统保护与控制,2016,44(9):38-42.
Yan Xiaojuan,Gong Renxi,Zhang Qianfeng.Application of SVM optimized by genetic algorithm for short-term wind speed prediction[J].Power System Protection and Control,2016,44(09):38-42.
[15]张欢欢.基于支持向量机的矿井巷道摩擦阻力系数预测研究[D].西安:西安科技大学,2017.
[16]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
[17]宋莹.基于GA的通风网络图优化绘制算法研究[D].葫芦岛:辽宁工程技术大学,2013.
[18]邓立军.矿井通风阻力系数反演研究[D].葫芦岛:辽宁工程技术大学,2014.
[1]金珠,马小平.基于核校准和SVM的煤矿安全组织管理因素分析[J].中国安全生产科学技术,2011,7(3):16.
JIN Zhu,MA Xiao-ping.Analysis of organizational administrative factors in coal mine safety based on kernel alignment and SVM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(4):16.
[2]张明丽,姚继涛.基于支持向量机建筑施工安全预警模型的研究[J].中国安全生产科学技术,2011,7(3):58.
ZNANG Ming-li,YAO Ji-tao.Study on Warning model of construction safety based on SVM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(4):58.
[3]吴云,王鹏,胡小娟,等.基于遗传-BP算法的煤矿安全监控系统测试研究[J].中国安全生产科学技术,2011,7(6):72.
WU Yun,WANG Peng,HU Xiao-juan,et al.Test Case Study of Coal Mine Safety Monitoring System Based on Genetic-BP Algorithm[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(4):72.
[4]杨惠,陈利平,谢传欣,等.烃类及其衍生物闪点、沸点的定量构效关系[J].中国安全生产科学技术,2011,7(9):68.
YANG Hui,CHEN Li-ping,XIE Chuan-xin,et al.QSPR study for predicting flash points and boiling points of hydrocarbon and their derivatives[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(4):68.
[5]杨力,陆红娟,张鑫,等.多类支持向量机在煤矿安全评价中的应用研究[J].中国安全生产科学技术,2012,8(4):111.
YANG Li,LU Hong juan,ZHANG Xin,et al.Application research of multiclass support vector machines
in coal mine safety evaluation[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(4):111.
[6]甘旭升,端木京顺,高建国.基于相关向量机的飞行安全评价方法[J].中国安全生产科学技术,2012,8(12):143.
GAN Xu sheng,DUANMU Jing shun,GAO Jian guo.Flight safety evaluation method based on relevance vector machine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(4):143.
[7]甘旭升,端木京顺,丛伟,等.基于支持向量机的飞行安全隐患危险性评价[J].中国安全生产科学技术,2010,6(3):206.
GAN Xu-sheng,DUANMU Jing-shun,CONG Wei,et al.Fatalness assessment of flight safety hidden danger based on support vector machine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(4):206.
[8]陈莹,蒋军成,潘勇,等.混合液体火灾爆炸危险性——闪点预测与实验研究[J].中国安全生产科学技术,2010,6(2):8.
CHEN Ying,JIANG Jun-cheng,PAN Yong,et al.Fire and Explosion risk of mixture——flash point prediction and experimental study[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(4):8.
[9]姚舜才,朱红青,沈静,等.支持向量机多重分类救生舱环境评价研究[J].中国安全生产科学技术,2013,9(4):44.[doi:10.11731/j.issn.1673-193x.2013.04.008]
YAO Shun cai,ZHU Hong qing,et al.Study on dynamic environment assessment for coal refuge
chamber based on support vector machine multiclassification[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(4):44.[doi:10.11731/j.issn.1673-193x.2013.04.008]
[10]袁朋伟,宋守信,董晓庆.基于灰色神经网络优化组合模型的火灾预测研究[J].中国安全生产科学技术,2014,10(3):119.[doi:10.11731/j.issn.1673-193x.2014.03.020]
YUAN Peng wei,SONG Shou xin,DONG Xiao qing.Study on fire accident prediction based on optimized grey neural network combination model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(4):119.[doi:10.11731/j.issn.1673-193x.2014.03.020]
[11]张钦礼,陈秋松,王新民,等.全尾砂絮凝沉降参数GA-SVM优化预测模型研究[J].中国安全生产科学技术,2014,10(5):24.[doi:10.11731/j.issn.1673-193x.2014.05.004]
ZHANG Qinli,CHEN Qiusong,WANG Xinming,et al.Study on GA_SVM optimal prediction model on flocculating sedimentation
parameter of unclassified tailings[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(4):24.[doi:10.11731/j.issn.1673-193x.2014.05.004]