|本期目录/Table of Contents|

[1]段正鹏,李志强,陈向军,等.多尺度煤粒与瓦斯多尺度动扩散系数模型特征参数关系研究[J].中国安全生产科学技术,2018,14(6):97-102.[doi:10.11731/j.issn.1673-193x.2018.06.015]
 DUAN Zhengpeng,LI Zhiqiang,CHEN Xiangjun,et al.Study on relationship between multiscale coal particles and characteristic parameters of gas multiscale dynamic diffusion coefficient model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(6):97-102.[doi:10.11731/j.issn.1673-193x.2018.06.015]
点击复制

多尺度煤粒与瓦斯多尺度动扩散系数模型特征参数关系研究()
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年6期
页码:
97-102
栏目:
职业安全卫生管理与技术
出版日期:
2018-06-30

文章信息/Info

Title:
Study on relationship between multiscale coal particles and characteristic parameters of gas multiscale dynamic diffusion coefficient model
文章编号:
1673-193X(2018)-06-0097-06
作者:
段正鹏12李志强345陈向军4成墙4李国红12
(1. 贵州省矿山安全科学研究院;2. 贵州省煤矿瓦斯防治工程技术研究中心;3.河南理工大学 中原经济区煤层(页岩气)河南省协同创新中心;4. 河南理工大学 煤矿灾害预防与抢险救灾教育部工程研究中心;5. 重庆大学 煤矿灾害动力学与控制国家重点实验室)
Author(s):
DUAN Zhengpeng12 LI Zhiqiang345 CHEN Xiangjun4 CHENG Qiang4 LI Guohong12
(1. Guizhou Provincial Research Institute of Mine Safety Science;2. Guizhou Provincial Engineering Technology Research Center for Coal Gas Prevention & Control;3. Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Henan Province,Henan Polytechnic University;4. MOE Engineering Center of Mine Disaster Prevention and Rescue, Henan Polytechnic University;5. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University)
关键词:
多尺度粒径扩散模型动态扩散系数
Keywords:
multiscale particle size diffusion model dynamic diffusion coefficient
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2018.06.015
文献标志码:
A
摘要:
为研究煤基质尺度对瓦斯扩散运移能力的影响,在实验室内开展了0.18~0.25 mm,0.25~1 mm,1~3 mm,3~6 mm,6~10 mm等5种不同尺度煤粒在不同初始吸附平衡压力下的瓦斯扩散实验。基于多尺度动扩散系数新模型,研究了煤粒尺度与多尺度动扩散系数模型特征参数的关系。研究结果表明:新模型对全扩散过程的描述精度要好于经典模型,经典模型最大相对误差达18.4%,而新模型仅为3.9%;相同条件下,初始扩散系数D0值随着粒径的增大呈递增趋势,最大增大了45.3倍;扩散衰减系数β值随着粒径的增大呈递减趋势,最大衰减了89.8%。实验揭示了多尺度煤粒内的瓦斯多尺度扩散特征,大尺度煤粒包含了更大的外在孔隙,导致煤粒尺度越大,初始扩散系数D0值越大,但因大尺度孔隙占比较大,导致孔隙尺度级差变化较小,因而有较小的衰减系数β值;小尺度煤粒因具有较小的外在孔隙,其D0值较小,但因微小孔隙占比较大,且微小孔隙尺度级差变化较大,因而有较大的衰减系数β值。不同煤粒尺度的扩散特征参数D0和β值的这种变化特征反映了当前低渗煤层瓦斯抽采过程中初期抽采量大但衰减迅速的现象,也为瓦斯(煤层气)增产及稳产提供了储层改造方向。
Abstract:
To study the influence of coal matrix scale on the diffusion and migration capacity of gas, the gas diffusion experiments of coal particles with 5 different scales under different initial adsorption equilibrium pressures were carried out, including 0.18 mm-0.25 mm, 0.25 mm-1 mm, 1 mm-3 mm, 3 mm-6 mm and 6 mm-10 mm. Based on the new model of multiscale dynamic diffusion coefficient, the relationship between the scale of coal particles and the characteristic parameters of the multiscale dynamic diffusion coefficient model was studied. The results showed that the description accuracy of the new model for the whole diffusion process was better than that of the classical model, and the maximum relative error of the classical model was 18.4%, while that of the new model was only 3.9%. The initial diffusion coefficient D0 increased with the increase of particle size under the same conditions, and increased by 45.3 times to the maximum. The diffusion attenuation coefficient β decreased with the increase of particle size, and the maximum attenuation was 89.8%. The experiments revealed the multiscale diffusion characteristics of gas in the multiscale coal particles. The large scale coal particles contained larger external pores, which caused the larger the scale of coal particles, the larger the initial diffusion coefficient D0, but the large pores occupied a relatively large proportion, which caused a smaller variation of pore scale level difference, so there was a smaller attenuation coefficient β. The small scale coal particles had smaller external pores, and the D0 values were smaller. However, the small pores occupied a relatively large proportion, and the small pore scale level difference varied greatly, so there was a larger attenuation coefficient β. The variation characteristics of diffusion characteristic parameters D0 and β under different scales of coal particles reflected the phenomenon of large initial volume but rapid attenuation in the process of gas drainage in the low permeability coal seam at present, and it also provides the direction to the reservoir transformation for increasing production and stable production of gas (CBM).

参考文献/References:

[1]聂百胜, 王恩元, 郭勇义, 等. 煤粒瓦斯扩散的数学物理模型[J]. 辽宁工程技术大学学报(自然科学版), 1999,18(6):582-585.NIE Baisheng, WANG Enyuan, GUO Yongyi, et al.Mathematical and physical model of gas diffusion through coal particles[J].Journal of Liaoning TechnicalUniversity(Natural science Edition),1999,18(6):582-585.
[2]杨其銮. 关于煤屑瓦斯放散规律的试验研究[J]. 煤矿安全, 1987(2):9-16.YANG Qiluan.Experimental research on coal gas diffusion[J].Safety in Coal Mines,1987(2):9-16.
[3]李志强, 王登科, 宋党育. 新扩散模型下温度对煤粒瓦斯动态扩散系数的影响[J]. 煤炭学报, 2015,40(5):1055-1064.LI Zhiqiang, WANG Dengke, SONG Dangyu.Influence of temperature on dynamic diffusion coefficient of CH4 into coal particles by new diffusion model[J].Journal of China Coal Society,2015,40(5):1055-1064.
[4]陈向军, 段正鹏, 刘洋, 等. 负压环境下含瓦斯煤扩散特性试验研究[J]. 煤炭科学技术, 2016,44(6):106-110.CHEN Xiangjun, DUAN Zhengpeng, LIU Yang, et al.Experiment study on diffusion features of gassy coal under negative pressure environment[J].Coal Science and Technology,2016,44(6):106-110.
[5]陈向军, 程远平. 注水对煤层吸附瓦斯解吸影响的试验研究[J]. 煤炭科学技术, 2014,42(6):96-99.CHEN Xiangjun, CHENG Yuanping.Experiment study on water injection affected to desorption of coal adsorption gas[J].Coal Science and Technology,2014,42(6):96-99.
[6]SEVENSTER PG. Diffusion of gases through coal[J]. Fuel, 1959,38(4):403-418.
[7]SMITH DM, WILLIAMS FL. A new technique for determination the methane content of coal: Proceedings of the 16th Intersociety Energy of Conversion Engineering Conference[C].1981
[8]RUCKENSTEIN E, VAIDYANATHAN A S, YOUNGQUIST GR. Sorption by solids with bidisperse pore structures[J]. Chemical Engineering Science, 1971(26):1305-1318.
[9]杨其銮. 煤屑瓦斯放散随时间变化规律的初步探讨[J]. 煤矿安全, 1986(4):4-12.YANG Qiluan.Discussion on regular of methane diffusion from coal cuttings with time[J].Safety in Coal Mines,1986(4):4-12.
[10]聂百胜, 郭勇义, 吴世跃, 等. 煤粒瓦斯扩散的理论模型及其解析解[J]. 中国矿业大学学报, 2001,30(1):21-24.NIE Baisheng, GUO Yongyi, WU Shiyue, et al.Theoretical model of gas diffusion through coal particles and its analytical solution[J].Journal of China University of Mining & Technology,2001,30(1):21-24.
[11]聂百胜, 杨涛, 李祥春, 等. 煤粒瓦斯解吸扩散规律实验[J]. 中国矿业大学学报, 2013,42(6):975-981.NIE Baisheng, YANG Tao, LI Xiangchun, et al.Research on diffusion of methane in coal particles[J].Journal of China University of Mining & Technology,2013,42(6):975-981.
[12]JIANG Haina, CHENG Yuanping, YUAN Liang. A fractial theory based fractional diffusion model used for the fast desorption process of methane in coal[J]. Chaos, 2013,23(3):33111.
[13]刘彦伟. 煤粒瓦斯放散规律、机理与动力学模型研究[D]. 焦作:河南理工大学, 2011.
[14]FLETCHER A J, YAPRAK Uygur  A, Thomas K M. Role of surface functional groups in the adsorption kinetics of water vapor on microporous activated carbons[J]. Journal of Physical Chemistry C, 2007, 111(23):8349-8359.
[15]PAN Zhejun, Connell LUKED, Camilleri MICHAEL, et al. Effects of matrix moisture on gas diffusion and flow in coal[J]. Fuel, 2010,89(11):3207-3217.
[16]STAIB GREGORY, SAKUROVS RICHARD, GRAY EVANMACA. A pressure and concentration dependence of CO2 diffusion in two Australian bituminous coals[J]. International Journal of Coal Geology, 2013,116-117:106-116.
[17]李志强, 刘勇, 许彦鹏, 等. 煤粒多尺度孔隙中瓦斯扩散机理及动扩散系数新模型[J]. 煤炭学报, 2016,41(3):633-643.LI Zhiqiang, LIU Yong, XU Yanpeng, et al.Gas diffusion mechanism in multiscale pores of coal particles and new diffusion model of dynamic diffusion coefficient[J].Journal of China Coal Society,2016,41(3):633-643.
[18]程小庆, 王兆丰, 李志强. 动扩散系数新模型下不同粒径构造煤的瓦斯扩散特征[J]. 中国安全生产科学技术, 2016,12(6):88-93.CHENG Xiaoqing, WANG Zhaofeng, LI Zhiqiang.Features of gas diffusion in tectonic coal with different particle sizes by new model of dynamic diffusion coefficient[J].Journal of Safety Science and Technology,2016,12(6):88-93.
[19]李志强, 王司建, 刘彦伟, 等. 基于动扩散系数新扩散模型的构造煤瓦斯扩散机理[J]. 中国矿业大学学报, 2015,44(5):836-842. LI Zhiqiang, WANG Sijian, LIU Yanwei, et al.Mechanism of gas diffusion in tectonic coal based on a diffusion model with dynamic diffusion coefficient[J].Journal of China University of Mining & Technology,2015,44(5):836-842.
[20]王司建, 李志强. 构造煤多尺度孔隙中瓦斯扩散的动扩散系数新模型[J]. 煤矿安全, 2015,46(5):16-19.WANG Sijian, LI Zhiqiang.Dynamic diffusion coefficient new model for gas diffusion in multiscale pore of tectonic coal[J].Safety in Coal Mines,2015,46(5):16-19.

相似文献/References:

[1]陈磊,李长俊,季楚凌.水平弯管内硫沉积数值模拟研究[J].中国安全生产科学技术,2015,11(2):28.[doi:10.11731/j.issn.1673-193x.2015.02.005]
 CHEN Lei,LI Chang-jun,JI Chu-ling.Study on numerical simulation of sulfur deposition in horizontal bend[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(6):28.[doi:10.11731/j.issn.1673-193x.2015.02.005]
[2]代濠源,樊建春,刘迪,等.粒径对硫磺燃烧爆炸特性影响的试验研究[J].中国安全生产科学技术,2015,11(2):120.[doi:10.11731/j.issn.1673-193x.2015.02.020]
 DAI Hao-yuan,FAN Jian-chun,LIU Di,et al.Experimental study on influence of particle size to combustion and explosion characteristics of sulfur[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(6):120.[doi:10.11731/j.issn.1673-193x.2015.02.020]
[3]冬雪,刘剑,高科,等.煤尘挥发分及粒径对爆炸火焰长度的影响研究[J].中国安全生产科学技术,2016,12(5):43.[doi:10.11731/j.issn.1673-193x.2016.05.008]
 WANG Dongxue,LIU Jian,GAO Ke,et al.Study on influence to length of explosion flame by volatile content and particle size of coal dust[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(6):43.[doi:10.11731/j.issn.1673-193x.2016.05.008]
[4]伍清,牛宜辉.特殊地质条件下深钻孔排渣技术及应用[J].中国安全生产科学技术,2016,12(5):146.[doi:10.11731/j.issn.1673-193x.2016.05.025]
 WU Qing,NIU Yihui.Technique of slag discharge in deep borehole under special geological conditions and its application[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(6):146.[doi:10.11731/j.issn.1673-193x.2016.05.025]
[5]王林元,吕瑞琪,邓洪波.不同粒径镁铝合金粉尘爆炸与抑爆特性研究[J].中国安全生产科学技术,2017,13(1):34.[doi:10.11731/j.issn.1673-193x.2017.01.006]
 WANG Linyuan,LYU Ruiqi,DENG Hongbo.Study on characteristics of explosion and explosion suppression for Magnesium-Aluminum alloy dust with different particle size[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(6):34.[doi:10.11731/j.issn.1673-193x.2017.01.006]
[6]卢国斌,李晓宇,祖秉辉,等.基于EMD-MFOA-ELM的瓦斯涌出量时变序列预测研究[J].中国安全生产科学技术,2017,13(6):109.[doi:10.11731/j.issn.1673-193x.2017.06.018]
 LU Guobin,LI Xiaoyu,et al.Research on time-varying series forecasting of gas emission quantity based on EMD-MFOA-ELM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(6):109.[doi:10.11731/j.issn.1673-193x.2017.06.018]
[7]金洪伟,高巧红,徐刚,等.不同瓦斯压力条件下煤样的爆碎特征研究[J].中国安全生产科学技术,2018,14(11):95.[doi:10.11731/j.issn.1673-193x.2018.11.015]
 JIN Hongwei,GAO Qiaohong,XU Gang,et al.Study on exploding and shattering characteristics of coal samples under different gas pressures[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(6):95.[doi:10.11731/j.issn.1673-193x.2018.11.015]
[8]覃小玲,李晓泉.惰性粉体对蔗糖粉尘最小点火能的影响研究[J].中国安全生产科学技术,2019,15(11):72.[doi:10.11731/j.issn.1673-193x.2019.11.011]
 QIN Xiaoling,LI Xiaoquan.Study on influence of inert dust on minimum ignition energy of sucrose dust[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(6):72.[doi:10.11731/j.issn.1673-193x.2019.11.011]
[9]李华,王岩彬,益朋,等.基于深度学习的复杂作业场景下安全帽识别研究*[J].中国安全生产科学技术,2021,17(1):175.[doi:10.11731/j.issn.1673-193x.2021.01.028]
 LI Hua,WANG Yanbin,YI Peng,et al.Research on recognition of safety helmets under complex operation scenes based on deep learning[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(6):175.[doi:10.11731/j.issn.1673-193x.2021.01.028]
[10]薛创,秦汝祥,张树川,等.不同粒径易自燃煤常温氧化实验研究*[J].中国安全生产科学技术,2021,17(8):64.[doi:10.11731/j.issn.1673-193x.2021.08.010]
 XUE Chuang,QIN Ruxiang,ZHANG Shuchuan,et al.Experimental study on oxidation of easily spontaneous combustion coal with different particle sizes at ambient temperature[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(6):64.[doi:10.11731/j.issn.1673-193x.2021.08.010]

备注/Memo

备注/Memo:
国家自然科学基金项目(51004041,51204065);煤矿灾害动力学与控制国家重点实验室开放课题(2011DA105287-KF201313);长江学者和创新团队发展计划(PCSIRT1235);河南省高校科技创新团队支持计划(17IRTSTHN030)
更新日期/Last Update: