[1]孙庆刚. 中国煤矿瓦斯灾害现状与防治对策研究[J].中国煤炭,2014,40(3):116-119.
SUN Qinggang. China Coal Mine gas disaster situation and measures to combat research [J]. China Coal ,2014,40(3):116-119.
[2]杨武艳,郁钟铭. GM(1,1)灰色预测模型在矿井瓦斯涌出量预测中的应用[J].矿业工程研究,2012,27(4):46-49.
YANG Wuyan, YU Zhongming.GM (1,1)grey forecasting model in the application of mine gas emission prediction [J]. Journal of Mining Engineering Research, 2012, 27 (4):46-49.
[3]权国林,赵琳琳,邵良杉. 基于主成分灰关联的瓦斯涌出量预测模型[J]. 辽宁工程技术大学学报(自然科学版)2017,36(4):366-370.
QUAN Guolin,ZHAO Linlin,SHAO Liangshan. Based on the principal component grey relation of gas emission prediction model [J]. Journal of Liao Ning Engineering Technology University (Natural Science Edition),2017,36(4):366-370.
[4]徐青伟,王兆丰. 瓦斯涌出量预测的GM(1,1)模型改进[J]. 煤炭技术,2015,34(1):147-149.
XU Qingwei,WANG Zhaofeng. Gas emission prediction GM (1,1)model to improve[J]. Journal of Coal Technology,2015 (1):147-149.
[5]陈伟华,闫孝姮,付华. 改进的Elman神经网络在瓦斯涌出量预测中的应用[J].安全与环境学报,2015,15(3):19-24.
CHEN Weihua,YAN Xiaoyuan,FU Hua. Application of improved Elman neural network in prediction of gas emission [J]. Journal of Safety and Environment,2015,15 (3):19-24.
[6]付华,王福娇,陈子春. 基于分数阶神经网络的瓦斯涌出量预测[J]. 传感器与微系统,2013,32(5):31-34.
FU Hua,WANG Fujiao,CHEN Zichun. Based on the fractional order neural network to forecast the gas emission of the [J]. Journal of Sensors and Micro Systems,2013,32 (5):31-34.
[7]吕伏,梁冰,孙维吉,等. 基于主成分回归分析法的回采工作面瓦斯涌出量预测[J].煤炭学报,2012,37(1):113-116.
LYU Fu,LIANG Bing,SUN Weiji,et al. Based on the principal component regression analysis of the working face gas emission prediction [J]. Journal of Coal,2012,37(1):113-116.
[8]付华,姜伟,单欣欣. 基于耦合算法的煤矿瓦斯涌出量预测模型研究[J]. 煤炭学报,2012,37(4):654-658.
FU Hua,JIANG Wei,SHAN Xinxin. Coal mine gas emission prediction model based on coupling algorithm study [J]. Journal of Coal,2012,37(4):654-658.
[9]付华,于翔,卢万杰.基于蚁群粒子群混合算法与LS-SVM瓦斯涌出量预测[J]. 传感技术学报,2016,29(3):373-377.
FU Hua,YU Xiang,LU Wanjie. Hybrid particle swarm based on ant colony algorithm and LS-SVM to forecast the gas emission [J]. Journal of Sensing Technology,2016,29 (3):373-377.
[10]王福建,李铁强,俞传正. 道路交通事故灰色Verhulst预测模型[J]. 交通运输工程学报,2006,6(1):122-126.
WANG Fujian,LI Tieqiang,YU Chuanzheng. Grey Verhulst prediction model for road traffic accidents[J]. Journal of Transportation Engineering,2006,6(1):122-126.
[11]杜江,袁中华,王景芹. 一种基于灰预测理论的混合蛙跳算法[J].电工技术学报,2017,32(15):190-198.
DU Jiang,YUAN Zhonghua,WANG Jingqin. One kind based on the ash forecast theory the mix frog jumps the algorithm[J]. Transactions of China Electrotechnical Society,2017,32( 15):190-198.
[12]宋晓华,杨尚东,刘达. 基于蛙跳算法的改进支持向量 机预测方法及应用[J].中南大学学报(自然科学版),2011,42(9):2737-2740.
SONG XiaoHua,YANG Shangdong,LIU Da. Based on the leapfrog algorithm to improve the support vector machine prediction methods and the application of [J]. Journal of Central South University(Natural Science Edition),2011,42(9):2737-2740.
[13]王文才,李刚,张世明.基于灰色理论的矿井瓦斯涌出量预测研究[J].煤矿开采,2011,16(3):53-58.
WANG Wencai,LI Gang,ZHANG Shiming. Mine gas emission prediction research based on gray theory [J]. Journal of Coal Mining,2011,16(3):53-58.
[14]陈洋,刘恩,陈大力.瓦斯涌出量分源预测法的发展与实践研究[J].煤矿安全,2010,41(2):73-76.
CHEN Yang,LIU En,CHEN Dali. Research on the development and practice of the method of predicting gas emission by source of sources [J]. Coal Mine Safety,2010,41(2):73-76.
[15]李杰,康天合,康官先.基于 IGSA-ELM 模型的回采工作面瓦斯涌出量预测[J].煤矿安全,2016,47(1):155-158.
LI Jie,KANG Tianhe,KANG Guanxian. Returns based on the IGSA-ELM model picks the working surface gas to gush out the quantity to forecast [J]. Coal Mine Safety,2016,47(1):155-158.
[16]张燕朋. 基于GM(1,1)模型的矿井瓦斯涌出量预测研究[J]. 煤炭技术,2012,31(2):101-103.
ZHANG Yanpeng. Gush out the quantity based on the GM(1,1)model damp to forecast studies [J]. Coal Technology,2012,31(2):101-103.
[17]雷文杰,刘瑞涛.灰色关联优化BP神经网络预测工作面瓦斯涌出量[J].矿业安全与环保,2013(5):33-41.
LEI Wenjie,LIU Ruitao. Grey correlation to optimize the BP neural network to predict coal face gas emission [J]. Journal of Mining Safety and Environmental Protection,2013(5):33-41.
[18]马建宏,陈懿博,庞泽明.综放工作面瓦斯涌出量预测方法及工程实践[J].中国安全生产科学技术,2014,10(10):143-147.
MA Jianhong,CHEN Yibo,PANG Zeming. Prediction method and engineering practice of gas emission in fully-mechanized caving face [J]. Journal of Safety Science and Technology,2014,10 (10):143-147.
[19]李润求,吴莹莹,施式亮,等.煤矿瓦斯涌出时序预测的自组织数据挖掘方法[J].中国安全生产科学技术,2017,13(7):18-23.
LI Runqiu,WU Yingying,SHI Shiliang,et al. Coal mine gas emission self-organizing data mining method for prediction of time series [J]. Journal of Safety Science and Technology,2017,13 (7):18-23.
[1]罗景峰,许开立.基于可变模糊组合方法的瓦斯涌出量预测[J].中国安全生产科学技术,2011,7(6):29.
LUO Jing-feng,XU Kai-li.Gas Emission Rate Forecast Based on variable fuzzy Combination method [J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(3):29.
[2]彭程,潘玉民.粒子群优化的RBF瓦斯涌出量预测[J].中国安全生产科学技术,2011,7(11):77.
PENG Cheng,PAN Yu-min.Particle swarm optimization RBF for gas emission prediction[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(3):77.
[3]马建宏,陈懿博,庞泽明.综放工作面瓦斯涌出量预测方法及工程实践[J].中国安全生产科学技术,2014,10(10):143.[doi:10.11731/j.issn.1673-193x.2014.10.024]
MA Jian-hong,CHEN Yi-bo,PANG Ze-ming.Prediction method and engineering practice of gas emission in fully mechanized top coal caving face[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(3):143.[doi:10.11731/j.issn.1673-193x.2014.10.024]
[4]程成,胡杰,龚选平,等.采空区瓦斯涌出的回采速度效应分析[J].中国安全生产科学技术,2019,15(12):78.[doi:10.11731/j.issn.1673-193x.2019.12.013]
CHENG Cheng,HU Jie,GONG Xuanping,et al.Analysis on effect of mining speed on gas emission of goaf[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(3):78.[doi:10.11731/j.issn.1673-193x.2019.12.013]
[5]马恒,任美学,高科.基于随机搜索优化XGBoost的瓦斯涌出量预测模型*[J].中国安全生产科学技术,2022,18(5):129.[doi:10.11731/j.issn.1673-193x.2022.05.020]
MA Heng,REN Meixue,GAO Ke.Prediction model of gas emission amount based on XGBoost optimized with random search algorithm[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(3):129.[doi:10.11731/j.issn.1673-193x.2022.05.020]