|本期目录/Table of Contents|

[1]毕慧杰,任延平,张浩浩,等.基于多因素模式识别的煤与瓦斯突出预测研究[J].中国安全生产科学技术,2017,13(6):98-103.[doi:10.11731/j.issn.1673-193x.2017.06.016]
 BI Huijie,REN Yanping,ZHANG Haohao,et al.Dynamic prediction of coal and gas outburst based on multi-factor pattern recognition[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(6):98-103.[doi:10.11731/j.issn.1673-193x.2017.06.016]
点击复制

基于多因素模式识别的煤与瓦斯突出预测研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年6期
页码:
98-103
栏目:
现代职业安全卫生管理与技术
出版日期:
2017-06-30

文章信息/Info

Title:
Dynamic prediction of coal and gas outburst based on multi-factor pattern recognition
文章编号:
1673-193X(2017)-06-0098-06
作者:
毕慧杰任延平张浩浩杨鸿智
辽宁工程技术大学 矿业学院,辽宁 阜新 123000
Author(s):
BI Huijie REN Yanping ZHANG Haohao YANG Hongzhi
College of Mining, Liaoning Technical University, Fuxin Liaoning 123000, China
关键词:
模式识别煤与瓦斯突出工程扰动VBA动态预测
Keywords:
pattern recognition coal and gas outburst engineering disturbance VBA dynamic prediction
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2017.06.016
文献标志码:
A
摘要:
采煤工作面煤与瓦斯突出是由煤层自然条件和工程扰动共同作用决定的,充分考虑煤层原始赋存条件和人类工程活动对煤与瓦斯突出的影响,建立多因素模式识别准则和方法,应用VBA技术完成了工作面煤与瓦斯突出危险性动态预测系统开发。以平顶山十矿己15-24080工作面为研究对象,将瓦斯含量、瓦斯压力、采动应力等因素作为工作面煤与瓦斯突出的主要影响因素,运用多因素模式识别方法实现了对工作面煤与瓦斯突出危险性分单元概率预测,且能够随着工作面不断推进进行动态预测和分级管理。研究结果表明:突出危险性预测结果与现场实况有较好的一致性,对煤矿安全开采具有良好的指导作用。
Abstract:
The coal and gas outburst in coal mining face is decided by the combined effect of natural conditions and engineering disturbance of coal seam. Fully considering the influence of the original occurrence conditions of coal seam and the human engineering activities on coal and gas outburst, the criteria and method of multi-factor pattern recognition were established, and the dynamic prediction system of coal and gas outburst risk in coal mining face was developed by using VBA technology. Taking Ji 15-24080 working face in Pingdingshan No.10 coal mine as the research object, the factors such as gas content, gas pressure, and mining stress etc., were taken as the main influence factors of coal and gas outburst. The unit probability prediction on coal and gas outburst risk in coal mining face was realized by using the multi-factor pattern recognition method, and the dynamic prediction and classification management can be carried out with the continuous advance of the working face. It showed that the results of outburst risk prediction were in good agreement with the field actual situation, and the method has a good guiding function to the safety mining of coal mine.

参考文献/References:

[1]朱志洁,张宏伟,韩军,等. 基于PCA-BP神经网络的煤与瓦斯突出预测研究[J]. 中国安全科学学报,2013,23(4):45-50. ZHU Zhijie, ZHANG Hongwei, HAN Jun,et al. Prediction of coal and gas outburst based on PCA-BP neural network[J]. China Safety Science Journal,2013,23(4):45-50.
[2]念其锋, 施式亮, 李润求. 基于网络分析和联系熵的煤与瓦斯突出预测研究[J]. 中国安全生产科学技术,2014(2):22-27. NIAN Qifeng, SHI Shiliang, LI Runqiu. Study on coal and gas outburst prediction based on analytic network process and connection entropy[J]. Journal of Safety Science and Technology, 2014(2):22-27.
[3]宋卫华,张宏伟. 矿井煤与瓦斯突出危险性预测的模式识别研究[J]. 安全与环境学报, 2006,6(S): 90-92. SONG Weihua, ZHANG Hongwei. Pattern recognition of coal and gas outburst fatalness prediction in mines [J].Journal of Safety and Environment, 2006,6(S): 90-92.
[4]曲方,张龙,李迎业,等. 基于BP神经网络的煤与瓦斯突出预测系统开发[J]. 中国安全科学学报,2012(1):11-16. QU Fang, ZHANG Long, LI Yingye, et al. Development of coal and gas outburst prediction system based on BP neural network [J]. China Safety Science Journal, 2012(1):11-16.
[5]杨飞龙,蒋承林,孙鑫,等. 煤与瓦斯突出影响因素评价分析的模糊层次分析方法[J]. 中国安全生产科学技术,2009(6):53-56. YANG Feilong, JIANG Chenglin, SUN Xin, et al. Evaluation and analysis on influential factors of coal and gas outburst based on fuzzy analytic hierarchy process[J].Journa1 of Safety Science and Technology, 2009(6):53-56.
[6]张子戌,刘高峰,吕润生,等. 基于模糊模式识别的煤与瓦斯突出区域预测[J]. 煤炭学报,2007(6):592-595. ZHANG Zixu, LIU Gaofeng, LV Runsheng,et al. Regional forecast of coal and gas burst based on fuzzy pattern recognition[J]. Journal of China Coal Societ, 2007(6):592-595.
[7]沈志伟,王恩元,钮月. 基于突变级数法的煤与瓦斯突出危险性预测[J].工矿自动化,2015,21(5):29-32. SHEN Zhiwei,WANG Enyuan, NIU Yue. Prediction of coal and gas outburst basedOncatastrophe progression method[J]. Industry and Mine Automation,2015,21(5):29-32.
[8]皮子坤, 贾宝山, 贾廷贵, 等. 煤与瓦斯突出预测综合指标F临界值研究[J]. 中国安全生产科学技术,2015(9):38-44. PI Zikun, JIA Baoshan, JIA Tinggui, et al. Study on critical value of comprehensive index F for coal and gas outburst prediction[J]. Journal of Safety Science and Technology, 2015(9):38-44.
[9]郭德勇,郑茂杰,郭超, 等. 煤与瓦斯突出预测可拓聚类方法及应用[J]. 煤炭学报,2009(6):783-787. GUO Deyong,ZHENG Maojie,GUO Chao, et al. Extension clustering method for coal and gas outburst prediction and its application[J]. Journal of China Coal Societ, 2009(6):783-787.
[10]牟全斌. 我国煤与瓦斯突出区域预测方法研究现状及展望[J]. 煤炭科学技术,2014(11):59-63. MOU Quanbin. Research status and Prospect of coal and gas outburst region prediction method in China[J]. Coal science and technology, 2014(11):59-63.
[11]张帆,郑立凯,卢择临,等. AutoCAD VBA 二次开发教程[M]. 北京: 清华大学出版社,2006.
[12]陈振华,余永权,张 瑞.模糊模式识别的几种基本模型研究[J].计算机技术与发展,2010,20(9):32-35. CHEN Zhenhua, YU Yongquan, ZHANG Rui. Research on several models of fuzzy pattern recognition problems[J].Computer Technology and Development, 2010,20(9):32-35.
[13]段旭琴, 丁照忠, 段健, 等. 多级模糊模式识别模型在评价高炉喷吹混煤中的应用[J]. 煤炭学报,2011,36(10):1748-1752. DUAN Xuqin, DING Zhaozhong, DUAN Jian, et al. Application of multi-classification fuzzy pattern recognition model in blast furnace injection assessment of blended coal[J]. Journal of China Coal Societ,2011, 36(10):1748-1752.
[14]钱鸣高,石平五,许家林. 矿山压力与岩层控制[M]. 徐州:中国矿业大学出版社,2010.
[15]林柏泉,张建国. 矿井瓦斯抽放理论与技术[M]. 徐州:中国矿业大学出版社,2007.

相似文献/References:

[1]罗景峰,许开立.基于可变模糊组合方法的瓦斯涌出量预测[J].中国安全生产科学技术,2011,7(6):29.
 LUO Jing-feng,XU Kai-li.Gas Emission Rate Forecast Based on variable fuzzy Combination method [J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(6):29.
[2]李德顺,宫博,许开立.石化企业火灾危险性模式识别模型研究[J].中国安全生产科学技术,2012,8(4):122.
 LI De shun,GONG Bo,XU Kai li.Research on risk pattern recognition model of fire inpetrochemical enterprise[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(6):122.
[3]马冬娟,李增华,杨永良,等.基于激波理论的新兴煤矿煤与瓦斯突出事故研究[J].中国安全生产科学技术,2012,8(8):69.
 MA Dong juan,LI Zeng hua,YANG Yong liang,et al.Research on coal and gas outburst accident of Xinxing coal mine based on shock wave theory[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(6):69.
[4]郑万成,邓小松,李一波.混合煤样中软分层对煤与瓦斯突出的影响[J].中国安全生产科学技术,2012,8(12):5.
 ZHENG Wan cheng,DENG Xiao song,LI Yi bo.Effect of soft layer in the mixed coal on coal and gas outburst[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(6):5.
[5]吴鑫,隆泗.不同煤粒粒级配比下的煤与瓦斯突出实验研究[J].中国安全生产科学技术,2012,8(12):16.
 WU Xin,LONG Si.Experimental study on the influence of coal particle size on coal and gas outburst[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(6):16.
[6]石庆礼,杨胜强.数量化理论Ⅲ及其在煤与瓦斯突出危险性评估中的应用[J].中国安全生产科学技术,2013,9(6):69.[doi:10.11731/j.issn.1673-193x.2013.06.013]
 SHI Qing li,YANG Sheng qiang.Quantification theory III and its application in the evaluation of coal and gas otburst[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(6):69.[doi:10.11731/j.issn.1673-193x.2013.06.013]
[7]翟盛锐,李忠祥.矿井围岩应力松弛区理论计算与试验研究[J].中国安全生产科学技术,2013,9(7):105.[doi:10.11731/j.issn.1673-193x.2013.07.018]
 ZHAI Sheng rui,LI Zhong xiang.Theoretical calculation and experimental research on slack stress zone of surrounding rocks in coal mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(6):105.[doi:10.11731/j.issn.1673-193x.2013.07.018]
[8]杨凯,王寿全,范映冲,等.煤与瓦斯突出危险性的未知权重多属性综合评价模型[J].中国安全生产科学技术,2013,9(10):33.[doi:10.11731/j.issn.1673-193x.2013.10.006]
 YANG Kai,WANG Shou quan,FAN Ying chong,et al.Unknown weight multiple attribute model for evaluating risk of coal and gas outburst[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(6):33.[doi:10.11731/j.issn.1673-193x.2013.10.006]
[9]张文涛,吕品,孙晓梅,等.张集矿综采工作面瓦斯治理措施及效果分析[J].中国安全生产科学技术,2014,10(1):103.[doi:10.11731/j.issn.1673-193x.2014.01.017]
 ZHANG Wen-tao,LV Pin,SUN Xiao-mei,et al.Study on gas control measures and effect analysis in mechanized mining face of Zhang Ji Coal Mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(6):103.[doi:10.11731/j.issn.1673-193x.2014.01.017]
[10]杨力,耿纪超,汪克亮.模糊支持向量机在煤与瓦斯突出预测中的研究[J].中国安全生产科学技术,2014,10(4):103.[doi:10.11731/j.issn.1673-193x.2014.04.018]
 YANG Li,GENG Ji chao,WANG Ke liang.Research on coal and gas outburst prediction using fuzzy support vector machines[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(6):103.[doi:10.11731/j.issn.1673-193x.2014.04.018]

备注/Memo

备注/Memo:
国家重点研发计划项目(2016YFC0801407);国家自然科学基金项目(51674132);深部岩土力学与地下工程国家重点实验室开放基金项目(SKLGDUEK1510)
更新日期/Last Update: 2017-07-11