|本期目录/Table of Contents|

[1]温廷新,孙红娟,张波,等.煤与瓦斯突出预测的QGA-LSSVM模型[J].中国安全生产科学技术,2015,11(5):5-12.[doi:10.11731/j.issn.1673-193x.2015.05.001]
 WEN Ting-xin,SUN Hong-juan,ZHANG Bo,et al.Prediction model for outburst of coal and gas based on QGA-LSSVM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(5):5-12.[doi:10.11731/j.issn.1673-193x.2015.05.001]
点击复制

煤与瓦斯突出预测的QGA-LSSVM模型
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
11
期数:
2015年5期
页码:
5-12
栏目:
学术论著
出版日期:
2015-05-30

文章信息/Info

Title:
Prediction model for outburst of coal and gas based on QGA-LSSVM
作者:
温廷新孙红娟张波邵良杉 孔祥博
(辽宁工程技术大学 系统工程研究所,辽宁 葫芦岛125105)
Author(s):
WEN Ting-xin SUN Hong-juan ZHANG Bo SHAO Liang-shan KONG Xiang-bo
(System Engineering Institute, Liaoning Technical University, Huludao Liaoning 125105, China)
关键词:
煤与瓦斯突出突出预测灰色关联因子分析量子遗传算法最小二乘支持向量机
Keywords:
outburst of coal and gas outburst prediction gray correlation factor analysis quantum genetic algorithm(QGA) least squares support vector machine(LSSVM)
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2015.05.001
文献标志码:
A
摘要:
为快速、有效地对煤与瓦斯突出类型作出预测,运用灰色关联和因子分析模型对所选主要的判别指标进行分析提取,利用量子遗传算法(QGA)对最小二乘支持向量机(LSSVM)的参数作寻优处理,最终建立QGA-LSSVM煤与瓦斯突出预测模型。选取从砚石台矿区历史实测的数据,以96∶20的比例对该模型进行训练与测试,并将预测结果与其他预测模型的预测效果进行了比较。研究结果表明:对判别指标进行灰色关联分析可以有效去除对煤与瓦斯突出影响作用小的指标;用因子分析进行公共因子提取,可以有效减少数据信息冗余;利用QGA优化的LSSVM模型能使结果避免陷入局部最优解,用该模型可以有效预测煤与瓦斯突出类型,误判率为0。
Abstract:
To predict the outburst type of coal and gas quickly and effectively, the main influence factors were analyzed and extracted by gray correlation and factor analysis model. The quantum genetic algorithm(QGA) was applied to optimize the parameters of the least squares support vector machine(LSSVM). Finally, the prediction model for outburst of coal and gas based on QGA-LSSVM was established . By selecting the historical measured data sets in Yanshitai mining area, the model was trained and tested by the proportion of 96:20, and the prediction results were compared with the results of other prediction models. The results showed that it can effectively remove the factors which have a little impact on the outburst of coal and gas by gray correlation analysis, and it can reduce data redundancy by using factor analysis to extract the common factors. The LSSVM model after optimization by QGA can avoid the results to fall into the local optimal solution, and it can effectively predict the outburst type of coal and gas with an error rate of zero.

参考文献/References:

[1]闫江伟,张小兵,张子敏. 煤与瓦斯突出地质控制机理探讨[J].煤炭学报,2013,38(7): 1174-1178 YAN Jiang-wei,ZHANG Xiao-bing,ZHANG Zi-min. Research on geological control mechanism of coal-gas outburst[J].Journal of China Coal Society, 2013,38 (7): 1174-1178
[2]张有狮,王志军,张瑞林. GIS支持下基于非线性理论的煤与瓦斯突出综合预测模型[J].安全与环境学报,2012,12(6): 190-193 ZHANG You-shi,WANG Zhi-jun,ZHANG Rui-lin.Coal and gas outburst comprehensive prediction model based on GIS and non-linear theory[J].Journal of Safety and Environment, 2012,12(6): 190-193
[3]高卫东. Fisher判别法在煤与瓦斯突出危险程度预测中的应用[J].中国安全科学学报,2010,20(10): 26-30 GAO Wei-dong.The application of fisher discriminant in predicting dangerous level of coal and gas outburst [J].China Safety Science Journal,2010,20(10): 26-30
[4]付华,许凡,徐耀松,等. 基于变权重RBF组合模型的煤与瓦斯突出强度预测[J].中国安全科学学报,2013,23(8): 65-70 FU Hua,XU Fan,XU Yao-Song, et al.Prediction of coal and gas outburst intensity based on variable weight RBF combination model [J].China Safety Science Journal, 2013,23(8): 65-70
[5]杨力,耿纪超,汪克亮. 模糊支持向量机在煤与瓦斯突出预测中的研究[J]. 中国安全生产科学技术,2014,10(4):103-108 YANG Li, GENG Ji-chao, WANG Ke-liang. Reseach on coal and gas outburst prediction using fuzzy support vector machines[J]. Journal of Safety Science and Technology,2014,10(4): 103-108
[6]孙燕,杨胜强,王彬,等. 用灰关联分析和神经网络方法预测煤与瓦斯突出[J]. 中国安全生产科学技术,2008,4(3):14-17 SUN Yan, YANG Sheng-qiang, WANG Bin, et al. Coal and gas outburst forecast by ANN and grey correlation[J]. Journal of Safety Science and Technology,2008,5(3):14-17
[7]王超,宋大钊,杜学胜,等. 煤与瓦斯突出预测的距离判别分析法及应用[J]. 采矿与安全工程学报,2009,(4):470-474 WANG Chao, SONG Da-zhao, DU Xue-sheng, et al. Prediction of coal and gas outburst based on distance discriminant analysis method and its application [J].Journal of Mining & Safety Engineering,2009, (4)9:470-474
[8]赵鑫,宋广军,李诚. 改进BP神经网络的煤与瓦斯突出预测[J].计算机仿真,2012,29(6): 195-198 ZHAO Xin,SONG Guang-jun,LI Cheng.Dangerous forecast of coal and gas bursting based on improved back propagation neural network[J]. Computer Simulation,2012,29(6): 195- 198
[9]Suykens,J.A.K. & Vandewalle J. Least squares support vector machine classifiers[J].Neural Processing Letters, 1999,9(3): 293-300
[10]温廷新,张波,邵良杉. 矿井突水水源识别的QGA-LSSVM模型[J]. 中国安全科学学报,2014,(7):111-116 WEN Ting-xin, ZHANG Bo, SHAO Liang- shan. QGA-LSSVM model water inrush source identification [J].China Safety Science Journal, 2014,(7):111-116
[11]Han K H,Kim J H. Genetic quantum algorithm and its application to combinatorial optimization problem[C].IEEE International Conference on Evolutionary Computation, 2000:1354-1360
[12]刘卫宁,靳洪兵,刘波. 基于改进量子遗传算法的云计算资源调度[J].计算机应用,2013,33(8):2151-2153 LIU Wei-ning, JIN Hong-bing, LIU Bo.Cloud computing resource scheduling based on improved quantum genetic algorithm[J].Journal of Computer Applications,2013,33(8):2151-2153
[13]苏博,刘鲁,杨方廷.基于灰色关联分析的神经网络模型[J].系统工程理论与实践,2008,(9):98-104 SU Bo, LIU Lu, YANG Fang-ting.Research of artificial neural network forecasting model based on grey relational analysis[J]. Systems Engineering-Theory & Practice, 2008, (9):98-104

相似文献/References:

[1]马冬娟,李增华,杨永良,等.基于激波理论的新兴煤矿煤与瓦斯突出事故研究[J].中国安全生产科学技术,2012,8(8):69.
 MA Dong juan,LI Zeng hua,YANG Yong liang,et al.Research on coal and gas outburst accident of Xinxing coal mine based on shock wave theory[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(5):69.
[2]郑万成,邓小松,李一波.混合煤样中软分层对煤与瓦斯突出的影响[J].中国安全生产科学技术,2012,8(12):5.
 ZHENG Wan cheng,DENG Xiao song,LI Yi bo.Effect of soft layer in the mixed coal on coal and gas outburst[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(5):5.
[3]吴鑫,隆泗.不同煤粒粒级配比下的煤与瓦斯突出实验研究[J].中国安全生产科学技术,2012,8(12):16.
 WU Xin,LONG Si.Experimental study on the influence of coal particle size on coal and gas outburst[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(5):16.
[4]石庆礼,杨胜强.数量化理论Ⅲ及其在煤与瓦斯突出危险性评估中的应用[J].中国安全生产科学技术,2013,9(6):69.[doi:10.11731/j.issn.1673-193x.2013.06.013]
 SHI Qing li,YANG Sheng qiang.Quantification theory III and its application in the evaluation of coal and gas otburst[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(5):69.[doi:10.11731/j.issn.1673-193x.2013.06.013]
[5]翟盛锐,李忠祥.矿井围岩应力松弛区理论计算与试验研究[J].中国安全生产科学技术,2013,9(7):105.[doi:10.11731/j.issn.1673-193x.2013.07.018]
 ZHAI Sheng rui,LI Zhong xiang.Theoretical calculation and experimental research on slack stress zone of surrounding rocks in coal mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(5):105.[doi:10.11731/j.issn.1673-193x.2013.07.018]
[6]杨凯,王寿全,范映冲,等.煤与瓦斯突出危险性的未知权重多属性综合评价模型[J].中国安全生产科学技术,2013,9(10):33.[doi:10.11731/j.issn.1673-193x.2013.10.006]
 YANG Kai,WANG Shou quan,FAN Ying chong,et al.Unknown weight multiple attribute model for evaluating risk of coal and gas outburst[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(5):33.[doi:10.11731/j.issn.1673-193x.2013.10.006]
[7]张文涛,吕品,孙晓梅,等.张集矿综采工作面瓦斯治理措施及效果分析[J].中国安全生产科学技术,2014,10(1):103.[doi:10.11731/j.issn.1673-193x.2014.01.017]
 ZHANG Wen-tao,LV Pin,SUN Xiao-mei,et al.Study on gas control measures and effect analysis in mechanized mining face of Zhang Ji Coal Mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(5):103.[doi:10.11731/j.issn.1673-193x.2014.01.017]
[8]杨力,耿纪超,汪克亮.模糊支持向量机在煤与瓦斯突出预测中的研究[J].中国安全生产科学技术,2014,10(4):103.[doi:10.11731/j.issn.1673-193x.2014.04.018]
 YANG Li,GENG Ji chao,WANG Ke liang.Research on coal and gas outburst prediction using fuzzy support vector machines[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(5):103.[doi:10.11731/j.issn.1673-193x.2014.04.018]
[9]杨飞龙,蒋承林,孙鑫,等.煤与瓦斯突出影响因素评价分析的模糊层次分析方法*[J].中国安全生产科学技术,2009,5(6):53.
 YANG Fei long,JIANG Cheng lin,SUN Xin,et al.Evaluation and analysis influential factors of coal and gas outburst based on fuzzy analytic hierarchy process[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(5):53.
[10]吕伏,梁冰,王岩,等.基于因子分析的开采层瓦斯抽采方法选择[J].中国安全生产科学技术,2014,10(7):26.[doi:10.11731/j.issn.1673-193x.2014.07.005]
 LV Fu,LIANG Bing,WANG Yan,et al.The choice of mining gas extraction method based on the factor analysis[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(5):26.[doi:10.11731/j.issn.1673-193x.2014.07.005]
[11]梁跃强,林辰,宫伟东,等.投影寻踪聚类方法在煤与瓦斯突出危险性预测中的应用[J].中国安全生产科学技术,2017,13(1):46.[doi:10.11731/j.issn.1673-193x.2017.01.008]
 LIANG Yueqiang,LIN Chen,GONG Weidong,et al.Application of projection pursuit cluster method in risk prediction of coal and gas outburst[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(5):46.[doi:10.11731/j.issn.1673-193x.2017.01.008]
[12]伍小沙,田世祥,马瑞帅,等.煤体初始瓦斯涌出规律预测煤巷突出危险性研究*[J].中国安全生产科学技术,2021,17(4):116.[doi:10.11731/j.issn.1673-193x.2021.04.019]
 WU Xiaosha,TIAN Shixiang,MA Ruishuai,et al.Study on prediction of outburst risk of coal roadway by initial gas emission law of coal body[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(5):116.[doi:10.11731/j.issn.1673-193x.2021.04.019]

备注/Memo

备注/Memo:
国家自然科学基金项目(713711091) ;辽宁省教育厅基金项目(L14BTJ004);山东省自然科学基金项目(ZR2010FL012);校企调研基金资助(SCDY2012018)
更新日期/Last Update: 2015-05-30