|本期目录/Table of Contents|

[1]武晓旭,龚孔成,贾明涛.煤矿事故预测的指数平滑—BP神经网络混合模型研究[J].中国安全生产科学技术,2014,10(9):165-169.[doi:10.11731/j.issn.1673-193x.2014.09.028]
 WU Xiao-xu,GONG Kong-cheng,JIA Ming-tao.Research on mixed model of exponential smoothing method and BP neural network for accidents forecasting in coal mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(9):165-169.[doi:10.11731/j.issn.1673-193x.2014.09.028]
点击复制

煤矿事故预测的指数平滑—BP神经网络混合模型研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
10
期数:
2014年9期
页码:
165-169
栏目:
职业安全卫生管理与技术
出版日期:
2014-09-30

文章信息/Info

Title:
Research on mixed model of exponential smoothing method and BP neural network for accidents forecasting in coal mine
作者:
武晓旭1龚孔成2贾明涛1
(1.中南大学 资源与安全工程学院,湖南长沙410083; 2.江苏华东有色投资控股有限公司,江苏南京210007)
Author(s):
WU Xiao-xu1 GONG Kong-cheng2 JIA Ming-tao1
(1. School of Resources & Safety Engineering, Central South University, Changsha Hunan 410083, China; 2. Eastern China non-ferrous metals investment holding Co. Ltd, Nanjing Jiangsu 210007, China)
关键词:
指数平滑法BP神经网络混合模型煤矿事故预测
Keywords:
exponential smoothing method BP neural network mixed model coal mine accidents forecasting
分类号:
X928.03
DOI:
10.11731/j.issn.1673-193x.2014.09.028
文献标志码:
A
摘要:
为准确预测煤矿未来安全生产形势,采用指数平滑法、BP神经网络模型对我国1991~2010年煤矿死亡人数进行建模研究。在分析两单一模型预测结果后进一步采用指数平滑-BP神经网络混合模型对原数据进行分析,结果表明混合模型泛化能力强,预测精度高,更加符合煤矿事故发展的特点,适用于对煤矿死亡人数的预测。并应用该混合模型对2014年及未来五年的煤矿死亡人数进行预测和分析,为煤矿安全管理提供理论依据,有助于最大限度地减少事故的发生。
Abstract:
In order to accurately forecast the future situation of work safety in coal mine, the exponential smoothing method and BP neural network model were used to study the death toll of coal mine from 1991 to 2010. After analyzing the predicted results of two single models, the raw data was further studied by mixed model of exponential smoothing method and BP neural network. The results showed that the mixed model has better generalization ability and higher prediction accuracy, which is more in accordance with the developmental feature of coal mine accidents and is suitable for forecasting the death toll of coal mine. At last the mixed model was applied to analyze and forecast the death toll in 2014 and the next five years. It provides the theoretical basis for safety management of coal mine and contributes to minimize the accidents.

参考文献/References:

[1]孙玉亮, 梁明, 王胜康. 基于spss时间序列模型的煤矿百万吨死亡率的预测[J]. 煤炭技术, 2011, (8):3-5 SUN Yu-liang, LIANG Ming, WANG Sheng-kang. Based on time series model of SPSS coal million tons mortality rates forecasts [J]. Coal Technology, 2011, (8):3-5
[2]Bates J M, Granger C W J. The combination of forecasts [J]. Operations Research Quarterly, 1969, 20(1):451-468
[3]李勇, 胡双启. 灰色Elman神经网络在火灾事故预测中的应用研究[J]. 中国安全科学学报, 2009, 19(3):28-31 LI Yong, HU Shuang-qi. The application study of gray elman neural networks to fire accident prediction [J]. China Safety Science Journal, 2009, 19(3):28-31
[4]胡双启, 李勇. 基于灰色Elman神经网络的煤矿事故预测[J]. 中国安全生产科学技术, 2009, 5(4):106-109 HU Shuang-qi, LI Yong. Prediction of coal mine accidents based on gray elman neural networks [J]. Journal of Safety Science and Technology, 2009, 5(4):106-109
[5]程爱宝,古德生,刘洪强. 基于AHP与粗糙集理论的采空区稳定性影响因素权重分析[J]. 中国安全生产科学技术, 2011, 7(9):50-55 CHENG Ai-bao,GU De-sheng,LIU Hong-qiang. Weights analysis of factors affecting the stability of Mined-out areas based on analytic hierarchy process and rough sets theory[J]. Journal of Safety Science and Technology, 2011, 7(9):50-55
[6]陈娇, 罗周全,侯造水. 基于改进突变级数法的金属矿采空区稳定性评价[J]. 中国安全生产科学技术, 2013, 9(11):17-24 CHEN Jiao, LUO Zhou-quan, HOU Zao-shui. Stability evaluation of metal mine goaf based on improved catastrophe progression method[J]. Journal of Safety Science and Technology, 2013, 9(11):17-24
[7]朱庆明, 张浩. 三次指数平滑法在煤矿事故预测中的应用研究[J]. 中国安全生产科学技术, 2012, (4):103-106 ZHU Qing-ming, ZHANG Hao. Study on the application of cubic exponential smoothing method in coal mine accidents forecasting [J]. Journal of Safety Science and Technology, 2012, (4):103-106
[8]马科伟, 袁梅, 李波波, 等. 基于人工神经网络的煤矿安全事故预测研究[J]. 中国煤炭, 2010, (9):109-112 MA Ke-wei, YUAN Mei, LI Bo-bo, et al. A research on coal mine safety forecast model based on artificial neural networks [J]. China Coal, 2010, (9):109-112
[9]黄琳, 魏保立. BP网络的泛化能力改进方法及应用[J]. 石家庄铁道学院学报, 2005, (3):94-96 HUANG Lin, WEI Bao-li. The improvement and application of BP network generalization ability [J]. Journal of Shijiazhuang Railway Institute, 2005, (3):94-96
[10]杨娟丽, 徐梅, 王福林, 等. 基于BP神经网络的时间序列预测问题研究[J]. 数学的实践与认识, 2013, (4):158-164 YANG Juan-li, XU Mei, WANG Fu-lin, et al. The study of time series prediction based on BP neural network [J]. Mathematics in Practice and Theory, 2013, (4):158-164

相似文献/References:

[1]汪送,王瑛,李超.BP神经网络在航空机务人员本质安全程度评价中的应用[J].中国安全生产科学技术,2010,6(6):35.
[2]王悦,薛伟.基于BP神经网络的东北贮木场火灾危险等级评定[J].中国安全生产科学技术,2013,9(2):173.
 WANG Yue,XUE Wei.Evaluation of fire danger rating of northeast lumberyard based on BP neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(9):173.
[3]孙赟,李明涛,姚晓晖.基于BP神经网络人群流量预测的实现[J].中国安全生产科学技术,2010,6(2):61.
 SUN Yun,LI Ming-tao,YAO Xiao-hui.Imphement of crowd flow prediction based on BP neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(9):61.
[4]高宗军,付青,郑秋霞,等.BP和Elman神经网络在砂土液化预测中的研究[J].中国安全生产科学技术,2013,9(6):58.[doi:10.11731/j.issn.1673-193x.2013.06.011]
 GAO Zong jun,FU Qing,ZHENG Qiu xia,et al.Study on forecasting of sand liquefaction by using BP neural and Elamn neural networks[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(9):58.[doi:10.11731/j.issn.1673-193x.2013.06.011]
[5]易高翔,潘长城,郭建中,等.基于多源数据融合的石油罐区安全监控模型[J].中国安全生产科学技术,2014,10(3):90.[doi:10.11731/j.issn.1673-193x.2014.03.015]
 YI Gao xiang,PAN Chang cheng,GUO Jian zhong,et al.Study on safety monitoring model of petroleum tank farm based on multisource data fusion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(9):90.[doi:10.11731/j.issn.1673-193x.2014.03.015]
[6]陈建宏,郑荣凯,陈 浩.基于PCA和BP神经网络边坡稳定性分析[J].中国安全生产科学技术,2014,10(5):142.[doi:10.11731/j.issn.1673-193x.2014.05.023]
 CHEN Jianhong,ZHENG Rongkai,CHEN Hao.Analysis on slope stability based on combination of PCA and BP neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(9):142.[doi:10.11731/j.issn.1673-193x.2014.05.023]
[7]宋新明,居 勇,曾 鸣,等.基于神经网络的供电企业安全文化评价研究*[J].中国安全生产科学技术,2009,5(4):55.
 SONG Xin ming,JU Yong,ZENG Ming,et al.Research on the evaluation of power supply enterprises safety culture based on neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(9):55.
[8]刘业娇,田志超,刘进才.BP神经网络在矿井本质安全程度评价中的应用[J].中国安全生产科学技术,2009,5(5):102.
 LIU Ye jiao,TIAN Zhi chao,LIU Jin cai.Application of BP neural network in the field of evaluation on intrinsical safety degree in mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(9):102.
[9]潘长城,王时彬,王如君,等.基于信息融合与GM的石油罐区安全监控预测模型[J].中国安全生产科学技术,2014,10(7):21.[doi:10.11731/j.issn.1673-193x.2014.07.004]
 PAN Chang-cheng,WANG Shi-bin,WANG Ru-jun,et al.Petroleum tank farm safety monitoring forecasting model based on information fusion and GM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(9):21.[doi:10.11731/j.issn.1673-193x.2014.07.004]
[10]陈建宏,陈浩,郑荣凯,等.基于物元分析与PCA的部队汽车分队安全评价模型[J].中国安全生产科学技术,2014,10(7):180.[doi:10.11731/j.issn.1673-193x.2014.07.032]
 CHEN Jian-hong,CHEN Hao,ZHENG Rong-kai,et al.Safety assessment model for military vehicle units based on combination of matter element analysis and PCA[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(9):180.[doi:10.11731/j.issn.1673-193x.2014.07.032]

备注/Memo

备注/Memo:
国家高技术研究发展计划(863计划)项目(2011AA060407);国家自然科学基金项目(51374242)
更新日期/Last Update: 2014-09-30