|本期目录/Table of Contents|

[1]邓奇根,姚萌萌,李帅,等.SRB还原SO2-4影响因素的广义灰色关联分析*[J].中国安全生产科学技术,2024,20(1):127-132.[doi:10.11731/j.issn.1673-193x.2024.01.019]
 DENG Qigen,YAO Mengmeng,LI Shuai,et al.Generalized grey relational analysis on factors influencing reduction of SO2-4 by SRB[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(1):127-132.[doi:10.11731/j.issn.1673-193x.2024.01.019]
点击复制

SRB还原SO2-4影响因素的广义灰色关联分析*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
20
期数:
2024年1期
页码:
127-132
栏目:
职业安全卫生管理与技术
出版日期:
2024-01-31

文章信息/Info

Title:
Generalized grey relational analysis on factors influencing reduction of SO2-4 by SRB
文章编号:
1673-193X(2024)-01-0127-06
作者:
邓奇根姚萌萌李帅刘朝思张哲铖
(1.河南理工大学 安全科学与工程学院,河南 焦作 454003;
2.河南省瓦斯地质与瓦斯治理重点实验室-省部共建国家重点实验室培育基地,河南 焦作 454003;
3.煤炭安全生产河南省协同创新中心,河南 焦作 454003)
Author(s):
DENG Qigen YAO Mengmeng LI Shuai LIU Chaosi ZHANG Zhecheng
(1.School of Safety Science and Engineering,Henan Polytechnic University,Jiaozuo Henan 454003,China;
2.State Key Laboratory Cultivation Base for Gas Geology and Gas Control (Henan Polytechnic University),Jiaozuo Henan 454003,China;
3.Collaborative Innovation Centre of Coal Safety Production of Henan Province,Jiaozuo Henan 454003,China)
关键词:
降解污泥SO2-4还原率硫化氢
Keywords:
degradation sludge SO2-4reduction rate hydrogen sulfide
分类号:
X959;X703.1
DOI:
10.11731/j.issn.1673-193x.2024.01.019
文献标志码:
A
摘要:
为探究影响硫酸盐还原菌(sulfate-reducing bacteria,SRB)降解污泥还原SO2-4的主要因素,构建广义灰色关联度评价模型,并对变量的重要度进行排序。研究结果表明:在一定条件下,SO2-4还原率随温度及初始pH值的上升呈现先增长后降低的趋势,随氧化还原电位的上升呈现不断降低的趋势;温度,初始pH,氧化还原电位的综合关联度分别为0.690,0.755,0.537,影响SO2-4还原率因素大小顺序为初始pH>温度>氧化还原电位。研究结果可为污泥处理过程中控制硫化氢的释放提供理论支持,并为避免或减少污泥产硫化氢导致的人员伤亡和财产损失提供思路。
Abstract:
In order to investigate the main factors influencing the reduction of SO2-4 in sludge degraded by sulfate-reducing bacteria,a generalized grey relational evaluation model was constructed,and the importance of variables was ranked.The results show that under certain conditions,the SO2-4 reduction rate increases first and then decreases with the rise of temperature and initial pH,and decreases with the rise of oxidation reduction potential.Meanwhile,the comprehensive correlation degrees of temperature,initial pH,and oxidation reduction potential are 0.690,0.755,and 0.537,respectively,and the magnitude of the factors influencing the SO2-4 reduction rate is in the order of initial pH > temperature > oxidation reduction potential.The results can provide theoretical support for controlling the release of hydrogen sulfide during sludge treatment,and can also provide ideas for avoiding or reducing human casualties and property damage caused by hydrogen sulfide production from sludge.

参考文献/References:

[1]陈亚,林波.废水厌氧生物处理及其理论研究[J].江西化工,2007(1):18-21. CHEN Ya,LIN Bo.Research on the theory and the kinetics of anaerobic biological treatment of waste water [J].Jiangxi Chemical Industry,2007(1):18-21.
[2]徐新宇,杨家宽,宋健,等.调理脱水污泥的热解特性及动力学分析[J].环境化学,2016,35(5):972-981. XU Xinyu,YANG Jiakuan,SONG Jian,et al.Pyrolysis characteristics and kinetics analysis of conditioned dewatered sewage sludge [J].Environmental Chemistry,2016,35(5):972-981.
[3]邓奇根,王颖南,吴喜发,等.硫酸盐还原菌处理煤矿酸性废水的研究及其影响因素[J].水处理技术,2020,46(5):8-11,29. DENG Qigen,WANG Yingnan,WU Xifa,et al.Study on the treatment of acid coal mine drainage by sulfate reducing bacteria and its influence factors [J].Technology of Water Treatment,2020,46(5):8-11,29.
[4]陈旭,马炯,李鑫,等.温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J].中国腐蚀与防护学报,2019,39(6):477-483. CHEN Xu,MA Jiong,LI Xin,et al.Synergistic effect of SRB and temperature on stress corrosion cracking of X70 steel in an artificial sea mud solution [J].Journal of Chinese Society for Corrosion and Protection,2019,39(6):477-483.
[5]WANG F,PENG S Q,FAN L,et al.Improved sulfate reduction efficiency of sulfate-reducing bacteria in sulfate-rich systems by acclimatization and multiple-grouting [J].Alexandria Engineering Journal,2022,61(12):9993-10005.
[6]LIU D,FAN Q G,PAPINEAU D,et al.Precipitation of protodolomite facilitated by sulfate-reducing bacteria:The role of capsule extracellular polymeric substances [J].Chemical Geology,2020,533:119415.
[7]DONG Y R,WANG J B,GAO Z Q,et al.Study on growth influencing factors and desulfurization performance of sulfate reducing bacteria based on the response surface methodology [J].ACS Omega,2023,8(4):4046-4059.
[8]LV Y,TANG C Y,LIU X Y,et al.Optimization of environmental conditions for microbial stabilization of uranium tailings,and the microbial community response [J].Frontiers in Microbiology,2021,12:770206.
[9]ZHANG Z W,Yu Y,XI H B,et al.Review of micro-aeration hydrolysis acidification for the pretreatment of toxic and refractory organic wastewater [J].Journal of Cleaner Production,2021,317:128343.
[10]BRAND T P H,ROEST K,CHEN G H,et al.Occurrence and activity of sulphate reducing bacteria in aerobic activated sludge systems [J].World Journal of Microbiology & Biotechnology,2015,31(3):507-516.
[11]冯颖,康勇,孔琦,等.硫酸盐生物还原的温度效应及Fe0的强化作用[J].水处理技术,2005(7):27-31. FENG Ying,KANG Yong,KONG Qi,et al.Effect of temperature on sulfate biological reduction and enhancement of iron [J].Technology of Water Treatment,2005(7):27-31.
[12]李昊宸,谢飞,齐季,等.温度和硫酸盐还原菌(SRB)协同作用下X80钢的腐蚀行为[J].钢铁研究学报,2020,32(10):900-908. LI Haochen,XIE Fei,QI Ji,et al.Effects of temperature and SRB on corrosion behavior of X80 pipeline steel [J].Journal of Iron and Steel Research,2020,32(10):900-908.
[13]罗亚楠,蔡昌凤,黄志.耐酸性硫酸盐还原菌的驯化及处理硫酸盐的研究[J].安徽工程大学学报,2013,28(1):9-12. LUO Yanan,CAI Changfeng,HUANG Zhi.Study on the domestication and desulphurization of the acid-resistant sulfa tereducing bacteria [J].Journal of Anhui Polytechnic University,2013,28(1):9-12.
[14]谭向东,严忠,张蕾蕾,等.乌尔禾油田采出水中SRB生长规律研究[J].油气田地面工程,2016,35(7):24-27. TAN Xiangdong,YAN Zhong,ZHANG Leilei,et al.Study on the growth rule of SRB in Wuerhe oilfield produced water [J].Oil-Gas Field Surface Engineering,2016,35(7):24-27.
[15]LEFEVRE C T,HOWSE P A,SCHMIDT M L,et al.Growth of magnetotactic sulfate-reducing bacteria in oxygen concentration gradient medium [J].Environmental Microbiology Reports,2016,8(6):1003-1015.
[16]CHANG Y J,CHANG Y T,HUNG C H,et al.Microbial community analysis of anaerobic bio-corrosion in different ORP profiles [J].International Biodeterioration & Biodegradation,2014,95:93-101.
[17]田民,刘思峰,卜志坤.灰色关联度算法模型的研究综述[J].统计与决策,2008(1):24-27. TIAN Min,LIU Sifeng,BU Zhikun.A review of research on gray correlation algorithm models [J].Statistics & Decision,2008(1):24-27.
[18]王颖南,邓奇根,刘明举,等.H2S脱除效率主控因素的广义灰色关联分析[J].中国安全生产科学技术,2019,15(6):24-29. WANG Yingnan,DENG Qigen,LIU Mingju,et al.Generalized grey relational analysis on main controlling factors of hydrogen sulfide removal efficiency [J].Journal of Safety Science and Technology,2019,15(6):24-29.
[19]林海飞,张静非,李树刚,等.煤矿硫化氢异常富集主控因素的广义灰色关联分析[J].中国安全生产科学技术,2017,13(6):27-33. LIN Haifei,ZHANG Jingfei,LI Shugang,et al.Generalized grey relational analysis on main controlling factors for abnormal enrichment of hydrogen sulfide in coal mine [J].Journal of Safety Science and Technology,2017,13(6):27-33.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2023-06-29
* 基金项目: 国家自然科学基金项目(51774116);河南省高等学校青年骨干教师培养计划项目(2019GGJS052)
作者简介: 邓奇根,博士,教授,主要研究方向为煤矿瓦斯(硫化氢)灾害预测与防治。
更新日期/Last Update: 2024-02-19