|本期目录/Table of Contents|

[1]陈勇,赵清全,吴教锟,等.工作面地质构造震电探测响应特性与佐证分析*[J].中国安全生产科学技术,2023,19(11):20-28.[doi:10.11731/j.issn.1673-193x.2023.11.003]
 CHEN Yong,ZHAO Qingquan,WU Jiaokun,et al.Response characteristics and supporting analysis of seismic electrical detection of geological structure in working face[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(11):20-28.[doi:10.11731/j.issn.1673-193x.2023.11.003]
点击复制

工作面地质构造震电探测响应特性与佐证分析*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
19
期数:
2023年11期
页码:
20-28
栏目:
学术论著
出版日期:
2023-11-30

文章信息/Info

Title:
Response characteristics and supporting analysis of seismic electrical detection of geological structure in working face
文章编号:
1673-193X(2023)-11-0020-09
作者:
陈勇赵清全吴教锟王海军刘百祥曹运飞
(1.湖南科技大学 资源环境与安全工程学院,湖南 湘潭 411201;
2.瓦斯灾害监控与应急技术国家重点实验室,重庆 400037;
3.中煤科工集团重庆研究院有限公司,重庆 400037;
4.云南滇东雨汪能源有限公司 雨汪煤矿一井,云南 曲靖 655000;
5.西安科技大学 安全科学与工程学院,陕西 西安 710054)
Author(s):
CHEN Yong ZHAO Qingquan WU Jiaokun WANG Haijun LIU Baixiang CAO Yunfei
(1.School of Resource & Environment and Safety Engineering,Hunan University of Science and Technology;2.National Key Laboratory of Gas Disaster Detecting,Preventing and Emergency Controlling;3.China Coal Technology Engineering Group Chongqing Research Institute;4.Yuwang Coal Mine of Huaneng Diandong Energy Company;5.College of Safety Science and Engineering,Xi’an University of Science and Technology)
关键词:
震电探测地质构造瓦斯富集衰减系数联合反演
Keywords:
seismic electrical detection geological structure gas enrichment attenuation coefficient joint inversion
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2023.11.003
文献标志码:
A
摘要:
为验证震-电联合探测技术在地质构造与瓦斯富集区域探测可靠性与准确性,提出无线电波探测、地震槽波探测与瓦斯涌出变化相结合的方法,开展工作面震-电联合探测响应特性与佐证分析研究。研究结果表明:通过0.30 MHz频率无线电波定点扫描方法可穿透工作面后稳定接收,根据探测衰减系数、相对衰减值圈定异常区域并实现工作面透视层析成像与地质解释;通过槽波双透射方法,探明工作面内部体波发育且相轴连续、槽波发育区域与工作面煤厚趋近一致,根据体波与槽波联合反演实现工作面地震槽波反演与地质解释;基于震-电联合探测技术,可将工作面划分为正常段、裂隙发育段、瓦斯富集段等不同属性区段,同时,工作面回采期间瓦斯涌出特征与探测成果的工程响应有效验证震-电联合探测成果。研究结果可有效实现工作面地质构造与瓦斯富集的超前探测,为工作面通风与瓦斯治理提供较好的理论依据与技术指导,也可为矿井智能精准开采与地质透明化提供参考借鉴。
Abstract:
To verify the reliability and accuracy of seismic electrical joint detection technology in the geological structures and gas enrichment areas detection,a method combining the radio wave detection,seismic in-seam wave detection and gas emission change was proposed to conduct research on the response characteristics and supporting analysis of seismic electrical joint detection in working face.The results show that the fixed point scanning method of 0.30 MHz frequency radio waves can penetrate the working face and stably receive,delineate abnormal areas based on the detection attenuation coefficient and relative attenuation value,and achieve the perspective tomography imaging and geological interpretation of the working face.By using the dual transmission method of in-seam waves,it is found that the internal body waves of the working face are developed and the phase axis is continuous,and the development area of in-seam waves is consistent with the coal thickness of the working face.Based on the joint inversion of body waves and in-seam waves,the seismic in-seam wave inversion and geological interpretation of the working face are achieved.Based on the seismic electrical joint detection technology,the working face can be divided into different attribute sections such as normal section,fracture development section,and gas enrichment section.At the same time,the engineering response of gas emission characteristics and detection results during the mining period of working face effectively verifies the seismic electrical joint detection results.The research results can effectively achieve advanced detection of geological structure and gas enrichment in working faces,provide good theoretical basis and technical guidance for ventilation and gas control in working faces,and also provide reference for intelligent and precise mining and geological transparency in mines.

参考文献/References:

[1]谢和平.“深部岩体力学与开采理论”研究构想与预期成果展望[J].工程科学与技术,2017,49(2):1-16.XIE Heping.Research framework and anticipated results of deep rock mechanics and mining theory[J].Advanced Engineering Sciences,2017,49(2):1-16.
[2]程远平,付建华,俞启香.中国煤矿瓦斯抽采技术的发展[J].采矿与安全工程学报,2009,26(2):127-139.CHENG Yuanping,FU Jianhua,YU Qixiang.Development of gas extraction technology in coal mines of China[J].Journal of Mining & Safety Engineering,2009,26(2):127-139.
[3]梁庆华,吴燕清,李云波,等.无线电波探测瓦斯富集区理论与方法[J].煤炭学报,2017,42(增刊1):148-154.LIANG Qinghua,WU Yanqing,LI Yunbo,et al.Theory and method of coal seam gas enrichment area based on radio wave perspective detection[J].Journal of China Coal Society,2017,42(Supplement 1):148-154.
[4]吴燕清.地下电磁波探测及应用研究[D].长沙:中南大学,2002.
[5]娄杰,孟庆智.构造带附近回采工作面内小构造综合预测研究[J].煤炭科学技术,2017,45(增刊1):180-182.LOU Jie,MENG Qingzhi.Study on comprehensive predicting of small scale structure within mining face zone nearby[J].Coal Science and Technology,2017,45(Supplement 1):180-182.
[6]顾焕琪,吴荣新,沈国庆,等.回采工作面断层构造无线电波反射测量方法研究[J].煤田地质与勘探,2022,50(2):125-131.GU Huanqi,WU Rongxin,SHENG Guoqing,et al.The reflected radio wave method for detecting coal seam faults in mining face[J].Coal Geology & Exploration,2022,50(2):125-131.
[7]顾焕琪.煤层工作面陷落柱三维无线电波透视响应特征研究[D].淮南:安徽理工大学,2022.
[8]吴荣新,庞瑶,胡泽安.采煤工作面无线电波探测技术研究进展[J].地球物理学进展,2022,37(5):2196-2204.WU Rongxin,PANG Yao,HU Zean.Research progress of radio wave detection technology in coal face[J].Progress in Geophysics,2022,37(5):2196-2204.
[9]康建宁.电磁波探测煤层突出危险性指标敏感性研究[D].重庆:煤炭科学研究总院重庆分院,2003.
[10]王康,姚小帅,廉洁,等.槽波地震勘探技术在煤矿灾害探测中的适用性研究[J].煤炭技术,2017,36(4):128-130.WANG Kang,YAO Xiaoshuai,LIAN Jie,et al.Applicability of coal mine disaster detecting by in-seam seismic survey[J].Coal Technology,2017,36(4):128-130.
[11]田玉培,杨双安,杨柳鑫.地震探测瓦斯富集区的定量分析研究[J].煤炭技术,2014,33(12):95-97.TIAN Yupei,YANG Shuang’an,YANG Liuxin.Quantitative analysis of seismic exploration for gas enrichment area [J].Coal Technology,2014,33(12):95-97.
[12]梁庆华,宋劲,孙兴平,等.地质雷达井下探测瓦斯富集区特征研究[J].地球物理学进展,2013,28(3):1570-1574.LIANG Qinghua,SONG Jin,SUN Xingping,et al.The characteristics study of ground penetrating radar detection of gas enrichment area in coal mine[J].Progress in Geophys,2013,28(3):1570-1574.
[13]杨智华.浅谈瓦斯富集区对透射槽波的响应特征及反演参数的相关性[J].煤炭科技,2020(2):11-16.YANG Zhihua.Preliminary discussion on response characteristics of gas enriched area to transmitted slot waves and correlation of inversion parameters[J].Coal Science & Technology Magazine,2020(2):11-16.
[14]王会林,赵护林.槽波反射法勘探在煤矿生产中的应用[J].西部探矿工程,2021(3):141-143.WANG Huilin,ZHAO Hulin.Application of slot wave reflection method in coal mine production [J].West-china Exploration Engineering,2021(3):141-143.
[15]苏晓云.综合地震勘探在万利矿区构造探查中的应用[J].工程勘察,2022(6):74-78.SU Xiaoyun.Application of synthetical seismic exploration in structural exploration of Wanli mining area[J].Geotechnical Investigation & Surveying,2022(6):74-78.
[16]崔伟雄,王保利,王云宏.基于透射槽波的工作面煤层厚度高精度反演方法[J].煤炭学报,2020,45(7):2482-2490.CUI Weixiong,WANG Baoli,WANG Yunhong.High-precision inversion method of coal seam thickness based on trans-mission channel wave[J].Journal of China Coal Society,2020,45(7):2482-2490.
[17]尹永明,姜福兴,谢广祥,等.基于微震和应力动态监测的煤岩破坏与瓦斯涌出关系研究[J].采矿与安全工程学报,2015,32(2):325-330.YIN Yongming,JIANG Fuxing,XIE Guangxiang,et al.Relation between coal-rock failure and methane emission based on microseismic and dynamic stress monitoring[J].Journal of Mining & Safety Engineering,2015,32(2):325-330.
[18]温亨聪,杨海涛,张辉辉.多频无线电坑透技术在煤矿地质构造探测中的应用[J].煤炭技术,2021,40(7):71-74.WEN Hengcong,YANG Haitao,ZHANG Huihui.Application of multi-frequency radio wave perspective technology in geological structure exploration of coal mine[J].Coal Technology,2021,40(7):71-74.
[19]肖玉林,吴荣新,张平松,等.无线电波透视场强增量法在煤层工作面坑透探测中的应用[J].矿业安全与环保,2016,43(5):36-40.XIAO Yulin,WU Rongxin,ZHANG Pingsong,et al.Application of radio wave penetration field strength increment method in detection by coal face roadway[J].Mining Safety & Environmental Protection,2016,43(5):36-40.
[20]王勃,刘胜东,孙华超,等.CO2震源的槽波勘探现场实验及前景讨论[J].煤炭学报,2022,47(2):906-914.WANG Bo,LIU Shengdong,SUN Huachao,et al.Field experiment and prospect discussion of in-seam seismic survey for CO2 source[J].Journal of China Coal Society,2022,47(2):906-914.
[21]李圣林,张平松,姬广忠,等.随掘地震超前探测掘进机震源信号的复合干涉处理研究[J].采矿与安全工程学报,2022,39(2):305-316.LI Shenglin,ZHANG Pingsong,JI Guangzhong,et al.Compound interference processing of roadheader source signal for advanced seismic detection while drilling[J].Journal of Mining & Safety Engineering,2022,39(2):305-316.
[22]廉玉广,李江华,焦阳,等.对称介质中陷落柱槽波地震波场响应特征研究[J].煤矿安全,2023,54(2):181-188.LIAN Yuguang,LI Jianghua,JIAO Yang,et al.Response characteristic of in-seam seismic wave field for collapse column in symmetrical medium[J].Safety in Coal Mines,2023,54(2):181-188.
[23]贾天让,王蔚,张子敏.云南省煤矿瓦斯赋存构造控制规律与瓦斯分带划分[J].中国安全生产科学技术,2014,10(9):42-47.JIA Tianrang,WANG Wei,ZHANG Zimin.Tectonic control rule and zoning division of coalmine gas occurrence in Yunnan province[J].Journal of Safety Science and Technology,2014,10(9):42-47.
[24]吴雪菲,李红霞,朱梦博.单侧采空工作面底板采动破坏微震监测与数值模拟研究[J].中国安全生产科学技术,2023,19(4):78-85.WU Xuefei,LI Hongxia,ZHU Mengbo.Microseismic monitoring and numerical simulation of coal seam floor mining-induced failure in unilateral mined-out face[J].Journal of Safety Science and Technology,2023,19(4):78-85.
[25]宋俊娜.槽波地震勘探与无线电波坑道透视综合物探在煤矿的应用[J].煤,2022,31(10):100-102.SONG Junna.Application of trough wave seismic exploration and radio wave tunnel perspective comprehensive geophysical exploration in coal mines[J].Coal,2022,31(10):100-102.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2023-06-08
* 基金项目: 华能集团总部科技项目(HNKJ19-H10);南方煤矿瓦斯与顶板灾害预防控制安全生产重点实验室开放基金项目(E22226);中国煤炭科工集团有限公司科技创新创业资金专项重点项目(2022-2-TD-ZD009);省部共建矿山岩层智能控制与绿色开采国家重点实验室培育基地开放基金项目(SICGM202304)
作者简介: 陈勇,博士研究生,副研究员,主要研究方向为矿井瓦斯防治技术及装备研发。
通信作者: 赵清全,本科,高级工程师,主要研究方向为矿井瓦斯防治和技术管理。
更新日期/Last Update: