|本期目录/Table of Contents|

[1]钱新明,刘梦华,吴昊,等.内爆作用下舱室结构毁伤数值模拟研究*[J].中国安全生产科学技术,2023,19(5):171-178.[doi:10.11731/j.issn.1673-193x.2023.05.024]
 QIAN Xinming,LIU Menghua,WU Hao,et al.Numerical simulation of damage to cabin structure under implosion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(5):171-178.[doi:10.11731/j.issn.1673-193x.2023.05.024]
点击复制

内爆作用下舱室结构毁伤数值模拟研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
19
期数:
2023年5期
页码:
171-178
栏目:
职业安全卫生管理与技术
出版日期:
2023-05-31

文章信息/Info

Title:
Numerical simulation of damage to cabin structure under implosion
文章编号:
1673-193X(2023)-05-0171-08
作者:
钱新明刘梦华吴昊张薇王子平袁梦琦
(1.北京理工大学 爆炸科学与技术国家重点实验室,北京 100081;
2.北京宇航系统工程研究所,北京 100076)
Author(s):
QIAN Xinming LIU Menghua WU Hao ZHANG Wei WANG Ziping YUAN Mengqi
(1.State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,China;
2.Beijing Institute of Astronautical Systems Engineering,Beijing 100076,China)
关键词:
发动机舱室单冲击波冲击波-破片耦合毁伤评估数值模拟
Keywords:
engine cabin single shockwave shockwave-fragment coupling damage assessment numerical simulation
分类号:
X932;X949
DOI:
10.11731/j.issn.1673-193x.2023.05.024
文献标志码:
A
摘要:
为研究内爆作用下,不同毁伤源形式对火箭发动机舱室的破坏效应,利用LS-DYNA软件建立舱室全尺寸模型,并基于ALE流固耦合算法实现不同工况下(1.5 kg TNT当量下单冲击波、1.5 kg TNT当量下冲击波-破片耦合、15 kg TNT当量下单冲击波、15 kg TNT当量下冲击波-破片耦合) ,冲击波和破片对舱室的毁伤仿真。研究结果表明:1.5 kg TNT当量下,爆源处未产生壳体破片,单冲击波较冲击波-破片耦合作用对舱室破坏更严重,主要以舱室底板出现破裂孔洞为主,冲击波-破片耦合作用下底板只发生局部变形;当量升至15 kg TNT时,2种破坏模式下舱室整体均发生严重破坏失稳,但冲击波-破片耦合较单冲击波,其破坏时间提前,破坏时长缩短,毁伤面积变大;在各工况下由于应力集中,柱段与底板连接处均最先断裂,并向底板和柱段发展,其中与爆源最近的底板破坏相对更严重。因此,可将底板及其与柱段连接处视为舱室薄弱点,研究结果可为舱室内爆毁伤评估和局部防护研究提供一定参考。
Abstract:
In order to study the damage effect of different damage sources on rocket engine cabin under implosion,a full-scale model of the cabin was established by using LS-DYNA software,and the damage simulation of the cabin by shockwave and fragment under different working condition (single shockwave under 1.5 kg TNT equivalent,shockwave-fragment coupling under 1.5 kg TNT equivalent,single shockwave under 15 kg TNT equivalent,shockwave-fragment coupling under 15 kg TNT equivalent) was realized based on ALE fluid-structure interaction algorithm.The results showed that under 1.5 kg TNT equivalent,no shell fragment was generated at the explosion source,and the single shockwave had more serious damage to the cabin than the shockwave-fragment coupling effect,mainly causing the broken holes in the cabin floor,and only local deformation occurred in the floor under the shockwave-fragment coupling effect.When the equivalent increased to 15 kg TNT,the whole cabin under two failure modes was seriously damaged and unstable,but the failure time of the shockwave-fragment coupling effect was earlier,the failure duration was shorter,and the damage area was larger.Under each working condition,due to the stress concentration,the connection between column section and bottom plate was the first to fracture,and developed towards the bottom plate and column section,among which the damage of bottom plate nearest to the explosion source was the most serious.Therefore,the bottom plate and its connection with the column section could be regarded as the weak point of the cabin,which can provide reference for the damage assessment and local protection study of the cabin implosion.

参考文献/References:

[1]樊凯旋,彭旭,任家帆,等.固体火箭发动机结构意外爆炸的数值模拟与风险评估[J].爆破器材,2020,49(4):58-64. FAN Kaixuan,PENG Xu,REN Jiafan,et al.Numerical simulation and risk assessment of accidental explosion of solid rocket engine structure[J].Explosive Materials,2020,49(4):58-64.
[2]王津,徐寅,董振义,等.大型运载火箭尾舱管路总装过程仿真技术研究[J].航空精密制造技术,2020,56(2):28-30. WANG Jin,XU Yin,DONG Zhenyi,et al.Research on computer simulation technology of pipeline assembly process of large launch vehicle’s tail cabin[J].Aviation Precision Manufacturing Technology,2020,56(2):28-30.
[3]杨学军,沈清,付继伟,等.固体火箭尾舱热环境研究[J].宇航学报,2018,39(5):578-584. YANG Xuejun,SHEN Qing,FU Jiwei,et al.Study on thermal environment of solid rocket tail compartment[J].Journal of Astronautics,2018,39(5):578-584.
[4]张同冰,赵鹏铎,李营.基于AUTODYN的舱室内爆结构响应数值研究[J].兵工学报,2015,36(S1):103-107. ZHANG Tongbing,ZHAO Pengduo,LI Ying.Numerical research on response of ship structure under internal explosion based on AUTODYN[J].Acta Armamentarii,2015,36(S1):103-107.
[5]宋贵宝,蔡滕飞,李红亮.舱室在爆炸冲击载荷作用下的结构毁伤研究[J].科学技术与工程,2014,14(3):268-270,276. SONG Guibao,CAI Tengfei,LI Hongliang.Studies on damage effect of cabin structure subjected to the explosion impulsion load[J].Science Technology and Engineering,2014 14(3):268-270,276.
[6]熊飞,石全,陈邦均.舱室内爆毁伤效应数值模拟[J].工程爆破,2016,22(6):32-37. XIONG Fei,SHI Quan,CHEN Bangjun.Numerical simulation on damage effect of cabin internal explosion[J].Engineering Blasting,2016,22(6):32-37.
[7]汪维,刘光昆,汪琴,等.钢结构箱体内爆作用下毁伤破坏试验研究[J].北京理工大学学报,2019,39(12):1225-1231. WANG Wei,LIU Guangkun,WANG Qin,et al.Experimental research of steel box under internal blast loading[J].Transactions of Beijing Institute of Technology,2019,39(12):1225-1231.
[8]ZHAO N,YAO S J,ZHANG D,et al.Experimental and numerical studies on the dynamic response of stiffened plates under confined blast loads[J].Thin-Walled Structures,2020,154:106839.
[9]LEE S G,LEE H S,LEE J S,et al.Shock response analysis of blast hardened bulkhead in partial chamber model under internal blast[J].Procedia Engineering,2017,173:511-518.
[10]KONG X S,WU W G,LI J,et al.Experimental and numerical investigation on a multi-layer protective structure under the synergistic effect of blast and fragment loadings[J].International Journal of Impact Engineering,2014,65:146-162.
[11]李营,张磊,杜志鹏,等.舱室结构在战斗部舱内爆炸作用下毁伤特性的实验研究[J].船舶力学,2018,22(8):993-1000. LI Ying,ZHANG Lei,DU Zhipeng,et al.Experiment investigation on damage characteristic of cabins under warhead internal blast[J].Journal of Ship Mechanics,2018,22(8):993-1000.
[12]李伟,朱锡,梅志远,等.战斗部舱内爆炸对舱室结构毁伤的实验研究[J].舰船科学技术,2009,3(3):34-37. LI Wei,ZHU Xi,MEI Zhiyuan,et al.Experimental studies on damage effect of missile warhead on cabin’s structure under internal explosion[J].Ship Science and Technology,2009,3(3):34-37.
[13]梁开武,蔡治勇,刘春.天然气管道蒸气云爆炸事故影响因素动态分析[J].中国安全生产科学技术,2016,12(S1):65-69. LIANG Kaiwu,CAI Zhiyong,LIU Chun.Dynamic analysis on influencing factors of vapor cloud explosion in natural gas pipeline[J].Journal of Safety Science and Technology,2016,12(S1):65-69.
[14]GUO Y B,LIU C C,WANG D G,et al.Numerical study and safety spacing of buried parallel gas pipelines:a study based on TNT equivalent method[J].International Journal of Pressure Vessels and Piping,2018,168:246-257.
[15]GUO Y B,HE L G,WANG D G,et al.Numerical investigation of surface conduit parallel gas pipeline explosive based on the TNT equivalent weight method[J].Journal of Loss Prevention in the Process Industries,2016,44:360-368.
[16]CHENG R S,CHEN W S,HAO H,et al.Dynamic response of road tunnel subjected to internal boiling liquid expansion vapour explosion (BLEVE)[J].Tunnelling and Underground Space Technology,2022,123:104363.
[17]田晓建,姚安林,徐涛龙,等.基于SPH-FEM耦合法的含缺陷输气管道爆炸冲击响应研究[J].中国安全生产科学技术,2018,14(9):55-62. TIAN Xiaojian,YAO Anlin,XU Taolong,et al.Research on explosion impact response of defective gas pipeline based on SPH-FEM coupling method[J].Journal of Safety Science and Technology,2018,14(9):55-62.
[18]文霞,姚安林,陈谦,等.隧道并行输气管道爆炸对邻管的冲击效应分析[J].中国安全生产科学技术,2017,13(1):156-162. WEN Xia,YAO Anlin,CHEN Qian,et al.Analysis on impact effect of gas pipeline explosion to adjacent pipeline for parallel pipeline in tunnel[J].Journal of Safety Science and Technology,2017,13(1):156-162.
[19]焦晓龙,赵鹏铎,姚养无,等.基于仿真与量纲分析的不同药量TNT内爆下多舱室结构毁伤规律研究[J].爆炸与冲击,2020,40(8):124-133. JIAO Xiaolong,ZHAO Pengduo,YAO Yangwu,et al.Regulation of different quantity TNT blasting in multi-cabin structure based on simulation and dimensional analysis[J].Explosion and Shock Waves,2020,40(8):124-133.
[20]朱芮锋,曹卓坤,张志刚.泡沫铝夹芯板水下抗爆性能的实验和数值模拟[J].材料与冶金学报,2021,20(3):204-210. ZHU Ruifeng,CAO Zhuokun,ZHANG Zhigang.Experimental and numerical study on underwater explosion resistance of aluminum foam sandwich[J].Journal of Materials and Metallurgy,2021,20(3):204-210.
[21]CHEN J Y,FANG H,LIU W Q,et al.Energy absorption of foam-filled multi-cell composite panels under quasi-static compression[J].Composites Part B:Engineering,2018,153(15):295-305.
[22]刘峰,张梦涛,王卓煜.碳纤维单向层合板落锤冲击损伤特性试验与仿真研究[J].兵器装备工程学报,2022,43(11):16-24. LIU Feng,ZHANG Mengtao,WANG Zhuoyu.Experimental and simulation research on falling weight impact damage of carbon fiber unidirectional laminates[J].Journal of Ordnance Equipment Engineering,2022,43(11):16-24.
[23]张旭红,王志华,赵隆茂.爆炸载荷作用下铝蜂窝夹芯板的动力响应[J].爆炸与冲击,2009,29(4):356-360. ZHANG Xuhong,WANG Zhihua,ZHAO Longmao.Dynamic responses of sandwich plates with aluminum honeycomb cores subjected to blast loading[J].Explosion and Shock Waves,2009,29(4):356-360.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2022-11-21
* 基金项目: 国家自然科学基金项目(52022012)
作者简介: 钱新明,博士,教授,主要研究方向为系统安全分析与安全评价技术。
通信作者: 袁梦琦,博士,教授,主要研究方向为爆炸机理与防护技术。
更新日期/Last Update: 2023-06-12