|本期目录/Table of Contents|

[1]殷德山,张英喆,于成龙,等.氢氩混合气(5%∶95%)在空气中可爆性实验研究[J].中国安全生产科学技术,2023,19(4):142-146.[doi:10.11731/j.issn.1673-193x.2023.04.020]
 YIN Deshan,ZHANG Yingzhe,YU Chenglong,et al.Experimental study on explosibility of hydrogen-argon gas mixture (5%∶95%) in air[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(4):142-146.[doi:10.11731/j.issn.1673-193x.2023.04.020]
点击复制

氢氩混合气(5%∶95%)在空气中可爆性实验研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
19
期数:
2023年4期
页码:
142-146
栏目:
职业安全卫生管理与技术
出版日期:
2023-04-30

文章信息/Info

Title:
Experimental study on explosibility of hydrogen-argon gas mixture (5%∶95%) in air
文章编号:
1673-193X(2023)-04-0142-05
作者:
殷德山张英喆于成龙赵军郑瑞臣
(1.中国安全生产科学研究院,北京 100012;
2.北京科技大学 土木与资源工程学院,北京 100083)
Author(s):
YIN Deshan ZHANG Yingzhe YU Chenglong ZHAO Jun ZHENG Ruichen
(1.China Academy of Safety Science and Technology,Beijing 100012,China;
2.School of Civil and Resource Engineering,Beijing University of Science and Technology,Beijing 100083,China)
关键词:
氢氩混合气体氧极限含量爆炸性测试与判定
Keywords:
hydrogen-argon gas mixture limiting oxygen concentration explosibility test and judgement
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2023.04.020
文献标志码:
A
摘要:
为研究氢氩混合气(5%∶95%)在空气中爆炸时所对应氢、氧极限含量,按照爆炸性测试标准EN 1839—2017,测试氢氩混合气在与空气的总混合气体中不同占比时的可爆性。研究结果表明:氢氩混合气(5%∶95%)在总混合气体中体积分数为76.018%~86.029%时,总混和气体具有爆炸危险性,与之对应能够发生爆炸的最低氢气体积分数为3.8%,最低氧气体积分数为2.93%,不具有爆炸性的最高氧含量为2.72%,该值较ISO 10156—2017《气体和气体混合物-气瓶阀口选择用潜在燃烧性和氧化能力的测定》中规定的极限氧含量低,研究结果可为氢氩气与空气的混合气体爆炸事故预防提供新的参考。
Abstract:
In order to find out the limiting hydrogen (oxygen) concentration corresponding to the explosion of hydrogen-argon gas mixture (5%∶95%) in air,according to the explosibility test standard EN 1839—2017,the explosibility of hydrogen-argon gas mixture within the different proportions was tested.The results showed that the hydrogen-argon gas mixture (5%∶95%) could form an explosive atmosphere when it accounted for 76.018%~86.029% in the mixture with air,corresponding to a minimum hydrogen percentage of 3.8%,a minimum oxygen percentage of 2.93% and the maximum oxygen content that is not explosive is 2.72% that could cause an explosion.The maximum oxygen content is lower than the limit oxygen content of 4.3% specified in existing relevant standards.The research results can provide a new reference for the prevention of hydrogen-argon-air gas mixture explosion accidents.

参考文献/References:

[1]叶元兴,马静,赵玉泽,等.基于150起实验室事故的统计分析及安全管理对策研究[J].实验技术与管理,2020,37(12):317-322. YE Yuanxing,MA Jing,ZHAO Yuze,et al.Statistical analysis and safety management countermeasures based on 150 laboratory accidents[J].Experimental Technology and Management,2020,37(12):317-322.
[2]鄂尔多斯市人民政府.事故快报八(2015年6月28日)[EB/OL].(2015-06-28)[2022-12-21].http://www.ordos.gov.cn/gk_128120/aqsc/sgdcbg/201506/t20150628_2499990.html.
[3]高文红.基于STAMP模型的高校实验室爆炸事故致因分析[J].实验技术与管理,2021,38(8):265-268. GAO Wenhong.Analysis of causes of explosion accidents in university laboratories based on STAMP model[J].Experimental Technology and Management,2021,38(8):265-268.
[4]张凯,杜赛枫,陈昊,等.泄爆和氮气惰化耦合作用对氢-空气爆炸影响的实验研究[J].爆炸与冲击,2022,42(12):165-174. ZHANG Kai,DU Saifeng,CHEN Hao,et al.Experiments on the effects of venting and nitrogen inerting on hydrogen-air explosions[J].Explosion and Shock Waves,2022,42(12):165-174.
[5]廖倩玉,陈志光.天然气管道掺氢输送安全问题研究现状[J].城市燃气,2021(4):19-26. LIAO Qianyu,CHEN Zhiguang.The safety research on blending hydrogen into natural gas pipeline[J].Urban Gas,2021(4):19-26.
[6]李艳超,毕明树,高伟.耦合火焰自加速传播的氢气云爆炸超压预测[J].爆炸与冲击,2021,41(7):10-15. LI Yanchao,BI Mingshu,GAO Wei.Theoretical prediction of hydrogen cloud explosion overpressure considering self-accelerating flame propagation[J].Explosion and Shock Waves,2021,41(7):10-15.
[7]王建,段吉员,黄文斌,等.氢氧混合气体爆炸临界条件实验研究[J].工业安全与环保,2008(10):26-28. WANG Jian,DUAN Jiyuan,HUANG Wenbin,et al.Experimental study on the critical explosion conditions of the hydroge/oxygen gas mixture[J].Industrial Safety and Envirmental Protection,2008(10):26-28.
[8]时静洁,赵薇,陈小林,等.泄爆口参数对氢气火焰传播过程影响的数值模拟[J].中国安全生产科学技术,2022,18(7):178-186. SHI Jingjie,ZHAO Wei,CHEN Xiaolin,et al.Numerical simulation on influence of explosion vent parameters on flame propagation process of hydrogen[J].Journal of Safety Science and Technology,2022,18(7):178-186.
[9]ZHANG Y,CAO W G,SHU C M,et al.Dynamic hazard evaluation of explosion severity for premixed hydrogen-air mixtures in a spherical pressure vessel[J].Fuel,2020,261(1):116433.
[10]陈磊,王鹏毅,孙树堂,等.高放废液储罐氢气爆炸事故试验研究[J].辐射防护,2021,41(1):64-70. CHEN Lei,WANG Pengyi,SUN Shutang,et al.Test on hydrogen explosion accident in high level liquid waste tank[J].Radiation Protection,2021,41(1):64-70.
[11]姜楠,秘义行,吕东,等.催化重整单元氢气气团爆炸超压分析[J].爆炸与冲击,2019,39(2):176-184. JIANG Nan,Bi Yixing,LYU Dong,et al.Explosion overpressure of hydrogen cloud in catalytic reforming process[J].Explosion and Shock Waves,2019,39(2):176-184.
[12]姜楠,张琰,王璐,等.大型反应器顶部氢气泄漏爆炸事故模拟研究[J].石油化工安全环保技术,2018,34(5):34-36,46. JIANG Nan,ZHANG Yan,WANG Lu,et al.Simulation study on hydrogen leakage and explosion accident at the to pof large reactor[J].Petrochemical Safety and Environment Protection Technology,2018,34(5):34-36,46.
[13]TANG C L,HUANG Z,JIN C,et al.Explosion characteristics of hydrogen-nitrogen-air mixtures at elevated pressures and temperatures[J].International Journal of Hydrogen Energy,2009,34(1):554-561.
[14]WANG L Q,MA H H,SHEN Z W.Explosion characteristics of hydrogen-air mixtures diluted with inert gases at subatmospheric pressures[J].International Journal of Hydrogen Energy,2019,44(40):22527-22536.
[15]潘传龙,谢亭,李亚辉,等.MOX项目连续烧结炉氢气爆炸安全分析[J].科技创新导报.2021,18(14):45-47. PAN Chuanlong,XIE Ting,LI Yahui,et al.Safety analysis on hydrogen explosion of continuous sintering furnace in MOX project[J].Science and Technology Innovation Herald,2021,18(14):45-47.
[16]Airgas Inc.Safety data sheet [EB/OL].[2022-12-21].https://www.airgas.com/msds/002005.pdf,9/20/2018.
[17]崔克清.安全工程燃烧爆炸理论与技术[M].北京:中国计量出版社,2005.
[18]International Organization for Standardization.Basic considerations for the safety of hydrogen systems:ISO/TR 15916—2015 [S].Geneva:BSI Standards Publication,2015.
[19]全国安全生产标准化技术委员会.氢气使用安全技术规程:GB 4962—2008 [S].北京:中国标准出版社,2009.
[20]NFPA.Technical Standard on explosion prevention syetems:NFPA 69—2019[S].Massachusetts:National Fire Protection Association,2019.
[21]European Committee for Standardization.Determination of the explosion limits and the limiting oxyen concentration (LOC) for flammable gases and vapours:EN 1839—2017[S].Brussels:Management Center,2017.
[22]European Committee for Standardization.Determination of maximum explosion pressure and the maximum rate of pressure rise of gases and vapours:EN 15967—2011[S].Brussels:Management Center,2011.
[23]International Organization for Standardization.Gas cylinders-gases and gas mixtures determination of fire potential and oxidizing ability for the selection of cylinder valve outlets(fourth edition):ISO 10156—2017[S].Geneva:ISO Copyright Office,2017.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2022-06-30
作者简介: 殷德山,硕士,高级工程师,主要研究方向为通风安全技术、风险评估理论与技术、人机工效学等。
更新日期/Last Update: 2023-05-11