|本期目录/Table of Contents|

[1]吴雪菲,李红霞,朱梦博.单侧采空工作面底板采动破坏微震监测与数值模拟研究*[J].中国安全生产科学技术,2023,19(4):78-85.[doi:10.11731/j.issn.1673-193x.2023.04.011]
 WU Xuefei,LI Hongxia,ZHU Mengbo.Microseismic monitoring and numerical simulation of coal seam floor mining-induced failure in unilateral mined-out face[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(4):78-85.[doi:10.11731/j.issn.1673-193x.2023.04.011]
点击复制

单侧采空工作面底板采动破坏微震监测与数值模拟研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
19
期数:
2023年4期
页码:
78-85
栏目:
职业安全卫生管理与技术
出版日期:
2023-04-30

文章信息/Info

Title:
Microseismic monitoring and numerical simulation of coal seam floor mining-induced failure in unilateral mined-out face
文章编号:
1673-193X(2023)-04-0078-08
作者:
吴雪菲李红霞朱梦博
(1.西安科技大学 能源学院,陕西 西安 710054;
2.中煤科工西安研究院(集团)有限公司,陕西 西安 710077;
3.西安科技大学 管理学院,陕西 西安 710054)
Author(s):
WU Xuefei LI Hongxia ZHU Mengbo
(1.School of Energy Engineering,Xi’an University of Science and Technology,Xi’an Shaanxi 710054,China;
2.CCTEG Xi’an Research Institute (Group) Co., Ltd.,China Coal Technology & Engineering Group,Xi’an Shaanxi 710077,China;
3.School of Management,Xi’an University of Science and Technology,Xi’an Shaanxi 710054,China)
关键词:
微震监测数值模拟煤层底板奥灰水破坏深度
Keywords:
microseismic monitoring numerical simulation coal seam floor Ordovician limestone water damage depth
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2023.04.011
文献标志码:
A
摘要:
为获知单侧采空工作面煤层底板采动破坏规律,分别采用数值模拟和微震监测技术研究某矿81307工作面底板采动破坏特征。研究结果表明:81307工作面采空区侧底板潜在损伤区范围大于实体煤侧,两侧底板潜在破坏深度分别为45,25 m,工作面煤壁前方底板应力场扰动范围约50 m,扰动深度约22 m。底板微震事件集中在81307工作面采空区侧,并向工作面中部延伸90 m左右,最大破坏深度约32 m。工作面宽度方向,底板破坏区近似为1个倾斜矩形面,与+X方向夹角16.5°。数值模拟、微震监测结果在81307工作面两侧底板差异化破坏深度、方向及工作面煤壁前方底板破坏趋势等方面吻合程度高。研究结果可为相关矿井底板防治水提供现场指导作用。
Abstract:
To study the mining-induced failure law of coal seam floor in the unilateral mined-out face,the numerical simulation and microseismic monitoring technology were applied respectively to study the floor mining-induced failure characteristics of No.81307 working face in a mine.The results showed that the potential damage area of the floor on the side adjacent to goaf at No.81307 working face was significantly larger than that on the side adjacent to solid coal.The potential damage depth of the floor on the above two sides were 45 m and 25 m,respectively.The disturbance range of the floor stress field in front of the coal wall of working face was about 50 m,and the disturbance depth was about 22 m.The floor microseismic events were mainly distributed on the side adjacent to goaf at No.81307 working face,then extended about 90 m to the middle of working face,and the maximum failure depth was about 32 m.In the width direction of working face,the floor failure zone was approximately an inclined rectangular surface,and the angle with the +X direction was 16.5°.The numerical simulation and the microseismic monitoring results agreed well with each other in terms of the differential failure depth and failure direction of floor on both sides of working face and the failure trend of floor in front of coal wall of the working face.The results can provide field guidance for floor water prevention and control in similar coal mines.

参考文献/References:

[1]刘启蒙,李鹏飞,张缓缓,等.损伤变量在煤层底板开采破坏深度计算中的应用[J].矿业安全与环保,2017,44(5):59-63. LIU Qimeng,LI Pengfei,ZHANG Huanhuan,et al.Application of damage variable in floor failure depth calculation during coal mining[J].Mining Safety & Environmental Protection,2017,44(5):59-63.
[2]邢瑞军,苏越,徐春虎,等.双侧采空区孤岛工作面底板破坏深度研究[J].煤炭工程,2017,49(12):99-102,107. XING Ruijun,SU Yue,XU Chunhu,et al.Study on floor defect destruction of island working face with bilateral gob area[J].Coal Engineering,2017,49(12):99-102,107.
[3]刘伟涛.岱庄煤矿下组煤承压水上膏体充填开采安全性研究[D].徐州:中国矿业大学,2017.
[4]鲁海峰,姚多喜,胡友彪,等.水压影响下煤层底板采动破坏深度弹性力学解[J].采矿与安全工程学报,2017,34(3):452-458. LU Haifeng,YAO Duoxi,HU Youbiao,et al.Elasticity solution for failure depth of mining floor under water pressure[J].Journal of Mining & Safety Engineering,2017,34(3):452-458.
[5]杨本水,黄天缘,宣以琼,等.特厚煤层综放开采底板破坏及阻隔水性能分析[J].安徽建筑大学学报,2019,27(3):28-33. YANG Benshui,HUANG Tianyuan,XUAN Yiqiong,et al.Bottom destruction and barrier performance analysis of fully mechanized caving mining in extra-thick coal seam[J].Journal of Anhui Jianzhu University,2019,27(3):28-33.
[6]黄广帅,翟新献,涂兴子,等.不同条件下带压开采煤层底板破坏深度研究[J].煤炭工程,2018,50(2):95-99. HUANG Guangshuai,ZHAI Xinxian,TU Xingzi,et al.Research on seam floor failure depth in coal mining above aquifer under different conditions [J].Coal Engineering,2018,50(2):95-99.
[7]翟晓荣,张红梅,窦仲四,等.基于不同岩层组合对底板阻水效应的流固耦合机理研究[J].中国安全生产科学技术,2016,12(7):16-21. ZHAI Xiaorong,ZHANG Hongmei,DOU Zhongsi,et al.Study on fluid-solid coupling mechanism for water resistance effect of coal floor based on different combination of rock strata[J].Journal of Safety Science and Technology,2016,12(7):16-21.
[8]段建华,闫文超,南汉晨,等.井-孔联合微震技术在工作面底板破坏深度监测中的应用[J].煤田地质与勘探,2020,48(1):208-213. DUAN Jianhua,YAN Wenchao,NAN Hanchen,et al.Application of mine-hole joint microseismic technology in monitoring the damage depth of working face floor[J].Coal Geology & Exploration,2020,48(1):208-213.
[9]鲁晶津,王冰纯,颜羽.矿井电法在煤层采动破坏和水害监测中的应用进展[J].煤炭科学技术,2019,47(3):18-26. LU Jingjin,WANG Bingchun,YAN Yu.Advances of mine electrical resistivity method applied in coal seam mining destruction and water inrush monitoring[J].Coal Science and Technology,2019,47(3):18-26.
[10]王厚柱,鞠远江,秦坤坤,等.深部近距离煤层开采底板破坏规律实测对比研究[J].采矿与安全工程学报,2020,37(3):553-561. WANG Houzhu,JU Yuanjiang,QIN Kunkun,et al.A comparative study on floor failure law in deep and short-distance coal seam mining[J].Journal of Mining & Safety Engineering,2020,37(3):553-561.
[11]王杰,李博凡,蒋齐平,等.工作面采动影响下底板破坏深度微震规律[J].采矿与岩层控制工程学报,2022,4(5):27-36. WANG Jie,LI Bofan,JIANG Qiping,et al.Identification of damage depth caused by longwall mining using microseismic technique[J].Journal of Mining and Strata Control Engineering,2022,4(5):27-36.
[12]王悦,于水,王苏健,等.微震监测技术在煤矿底板突水预警中的应用[J].煤炭科学技术,2018,46(8):68-73. WANG Yue,YU Shui,WANG Sujian,et al.Application of microseismic monitoring technology in water inrush warning of coal mine floor[J].Coal Science and Technology,2018,46(8):68-73.
[13]刘文静,岳东,霍小泉,等.基于微震监测的近距离煤层重复采动覆岩裂隙发育特征研究[J].煤炭技术,2022,41(9):23-28. LIU Wenjing,YUE Dong,HUO Xiaoquan,et al.Study on development characteristics of overburden fractures under repeated mining in short distance coal seam based on microseismic monitoring[J].Coal Technology,2022,41(9):23-28.
[14]王云刚,唐飞,杜炳成,等.超长回采工作面微震特征的影响因素研究[J].中国安全生产科学技术,2022,18(8):91-97. WANG Yungang,TANG Fei,DU Bingcheng,et al.Study on influencing factors of microseismic characteristics of ultra-long mining face[J].Journal of Safety Science and Technology,2022,18(8):91-97.
[15]杨贵,陈世万,余琪,等.基于岩石微破裂演化崩塌失稳预警室内试验研究[J].矿业安全与环保,2022,49(3):26-33. YANG Gui,CHEN Shiwan,YU Qi,et al.Laboratory research on early warning of collapse and instability based on rock micro-fracture evolution[J].Mining Safety & Environmental Protection,2022,49(3):26-33.
[16]刘晓明,赵嘉轩,王李管,等.基于综合评价法的矿山微震监测台网布设评价[J].中国安全生产科学技术,2016,12(5):66-72. LIU Xiaoming,ZHAO Jiaxuan,WANG Liguan,et al.Evaluation on layout of mine microseismic monitoring network based on comprehensive evaluation method[J].Journal of Safety Science and Technology,2016,12(5):66-72.
[17]ZHAO H.A fast sweeping method for Eikonal equations[J].Mathematics of Computation,2005,74(250):603-627.
[18]王辉,梁苗,朱梦博.基于单纯形-最短路径射线追踪的微震震源混合定位算法[J].中国矿业,2020,29(10):110-115,121. WANG Hui,LIANG Miao,ZHU Mengbo.A hybrid microseismic source location algorithm based on Simplex and shortest path ray tracing[J].China Mining Magazine,2020,29(10):110-115,121.
[19]郭超,高永涛,吴顺川,等.基于三维快速扫描算法与到时差数据库技术的层状介质震源定位方法研究[J].岩土力学,2019,40(3):1229-1238. GUO Chao,GAO Yongtao,WU Shunchuan,et al.Research of micro-seismic source location method in layered velocity medium based on 3D fast sweeping algorithm and arrival time differences database technique[J].Rock and Soil Mechanics,2019,40(3):1229-1238.

相似文献/References:

[1]王艳,邱榕,安江涛,等.干挂石材幕墙火蔓延数值模拟研究[J].中国安全生产科学技术,2011,7(4):29.
 WANG Yan,QIU Rong,AN Jiang-tao,et al.Numerical simulation study of stone curtain wall fire[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(4):29.
[2]姜虹,李丽霞,沙锡东.甲苯池火辐射数值模拟[J].中国安全生产科学技术,2011,7(4):34.
 JIANG Hong,LI Li-xia,SHA Xi-dong.Numerical simulation of heat radiation by toluene pool fire[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(4):34.
[3]吴玉剑,潘旭海.障碍物地形条件下重气泄漏扩散实验的CFD模拟验证[J].中国安全生产科学技术,2010,6(3):13.
 WU Yu-jian,PAN Xu-hai.Simulation and verification of CFD on dispersion of heavy gas leakage in obstacle terrain[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(4):13.
[4]王婉娣,张靖岩,冯炼,等.纵向通风对长大隧道火灾烟流控制分析[J].中国安全生产科学技术,2010,6(3):28.
 WANG Wan-di,ZHANG Jing-yan,FENG Lian,et al.Three-dimensional simulation analysis of smoke flow controlled by longitudinal ventilation in long tunnel fire[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(4):28.
[5]何雪松.地铁大断面隧道盾构过江风险分析及数值模拟[J].中国安全生产科学技术,2010,6(3):33.
 HE Xue-song.Risk analysis and numerical simulation on large cross-section shielding tunnel through river[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(4):33.
[6]李炎锋,付成云,李俊梅,等.城市交通隧道坡度对火灾烟气扩散影响研究[J].中国安全生产科学技术,2011,7(5):10.
 LI Yan-feng,FU Cheng-yun,LI Jun-mei,et al.Study on the Slope Effect on Smoke Propagation in Urban Traffic Tunnel[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(4):10.
[7]张明丽,姚继涛.基于支持向量机建筑施工安全预警模型的研究[J].中国安全生产科学技术,2011,7(3):58.
 ZNANG Ming-li,YAO Ji-tao.Study on Warning model of construction safety based on SVM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(4):58.
[8]马世海.城区天然气管道泄漏数值模拟与爆炸危害分析[J].中国安全生产科学技术,2011,7(7):26.
 MA Shi-hai.Numerical Simulation of Diffusion and Explosion Risk Analysis of Urban Nature Gas leakage[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(4):26.
[9]张威,何嘉鹏,李静娴.走廊-前室缓冲区在建筑火灾中的可行性分析[J].中国安全生产科学技术,2011,7(9):11.
 ZHANG wei,HE Jia-peng,LI Jing-xian.Feasibility analysis?on "corridor-atria buffer" in smoke control of high-rise building fire[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(4):11.
[10]赵平,季经纬,武爽.基于数值模拟的外墙保温体系防火问题研究[J].中国安全生产科学技术,2011,7(9):40.
 ZHAO Ping,JI Jing-wei,WU Shuang.Study on the external wall insulation system for fire prevention based on the numerical simulation[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(4):40.
[11]张宏伟,朱峰,盛继权,等.多手段综合分析特厚煤层分层开采覆岩破坏高度[J].中国安全生产科学技术,2016,12(1):11.[doi:10.11731/j.issn.1673-193x.2016.01.002]
 ZHANG Hongwei,ZHU Feng,SHENG Jiquan,et al.Multiple means comprehensive analysis on failure height of overburden strata in slicing mining of ultra thick coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(4):11.[doi:10.11731/j.issn.1673-193x.2016.01.002]
[12]张宏伟,朱峰,盛继权,等.多手段综合分析特厚煤层分层开采覆岩破坏高度[J].中国安全生产科学技术,2016,12(1):11.[doi:10.11731/j.issn.1673-193x.2016.01.002]
 ZHANG Hongwei,ZHU Feng,SHENG Jiquan,et al.Multiple means comprehensive analysis on failure height of overburden strata in slicing mining of ultra thick coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(4):11.[doi:10.11731/j.issn.1673-193x.2016.01.002]

备注/Memo

备注/Memo:
收稿日期: 2022-10-05
* 基金项目: 国家自然科学基金项目(U1904210);山西省科技厅重点研发项目(2021SF-479)
作者简介: 吴雪菲,博士研究生,主要研究方向为隐蔽地质灾害智能辨识。
通信作者: 李红霞,博士,教授,主要研究方向为安全经济与管理。
更新日期/Last Update: 2023-05-11