|本期目录/Table of Contents|

[1]杨晓丽,张有兴,王晓磊,等.温度交变下液态乙烷回气管线热应力数值计算与现场测试*[J].中国安全生产科学技术,2021,17(12):60-65.[doi:10.11731/j.issn.1673-193x.2021.12.010]
 YANG Xiaoli,ZHANG Youxing,WANG Xiaolei,et al.Numerical calculation and field test of thermal stress of liquid ethane return gas pipeline under alternating temperature[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(12):60-65.[doi:10.11731/j.issn.1673-193x.2021.12.010]
点击复制

温度交变下液态乙烷回气管线热应力数值计算与现场测试*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
17
期数:
2021年12期
页码:
60-65
栏目:
职业安全卫生管理与技术
出版日期:
2021-12-31

文章信息/Info

Title:
Numerical calculation and field test of thermal stress of liquid ethane return gas pipeline under alternating temperature
文章编号:
1673-193X(2021)-12-0060-06
作者:
杨晓丽张有兴王晓磊刘涛周兆明张佳
(1.新疆油田公司 采气一厂,新疆 克拉玛依 834000;
2.西南石油大学 机电工程学院,四川 成都 610500;
3. 油气藏地质及开发工程国家重点实验室,四川 成都 610500)
Author(s):
YANG Xiaoli ZHANG Youxing WANG Xiaolei LIU Tao ZHOU Zhaoming ZHANG Jia
(1.The First Gas Production Plant of Xinjiang Oil Field Company,Karamay Xinjiang 834000,China;
2.School of Mechanical Engineering,Southwest Petroleum University,Chengdu Sichuan 610500,China;
3.State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu Sichuan 610500,China)
关键词:
液态乙烷管线热应力数值计算现场测试
Keywords:
liquid ethane pipeline thermal stress numerical calculation field test
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2021.12.010
文献标志码:
A
摘要:
为解决低温交变载荷下液态乙烷回气管线面临的安全问题,采用有限元法和现场试验研究管线在低温交变载荷下无裂纹和含轴向裂纹管线的热应力分布。结果表明:管内温度沿周向和轴向分布具有较大的不均匀性,内外壁温度分布趋势基本相似;随着计算时间的延长,管线整体热应力先增大再减小;卸压、温度回升过程中,管内温差逐渐减小,热应力逐渐减小;裂纹处的热应力大于远离裂纹及无裂纹处的热应力;对管线热应力变化进行现场监测,试验数据与仿真结果吻合。研究结果可为低温情况下液态乙烷回气管线的方案设计提供参考和指导。
Abstract:
In order to solve the safety problem of liquid ethane return gas pipeline under the low temperature alternating load,the thermal stress distribution of the pipeline without crack and the pipeline with axial crack under the low temperature alternating load was studied by using the finite element method (FEM) and field tests.The results showed that the circumferential and axial temperature distribution in the pipe had the great inhomogeneity.The temperature distribution trend of the inner and outer wall of the pipeline was basically similar.With the extension of calculation time,the overall thermal stress of the pipeline increased first and then decreased.In the processes of pressure relief and temperature upturn,the temperature difference in the pipeline and the thermal stress decreased gradually.The thermal stress at the crack was much larger than those at the location far away from the crack and the location without crack.The thermal stress change of the pipeline was monitored on site,and the test data was consistent with the simulation results.The results can provide reference and guidance for the scheme design of liquid ethane return gas pipeline at low temperature.

参考文献/References:

[1]MONTASSIR S,YAKOUBI K,MOUSTABCHIR H,et al.Analysis of crack behaviour in pipeline system using FAD diagram based on numerical simulation under XFEM [J].Applied Sciences,2020,10(17):6129.
[2]杨帆,李雷雷,姜文全,等.埋地热油管道泄漏裂纹开裂的应力研究[J].中国安全生产科学技术,2015,11(6):63-67. YANG Fan,LI Leilei,JIANG Wenquan,et al.Stress study of buried geothermal oil pipeline leakage crack cracking [J].Journal of Safety Science and Technology,2015,11(6):63-67.
[3]DU B C,HE Y L,ZHENG Z J,et al.Analysis of thermal stress and fatigue fracture for the solar tower molten salt receiver [J].Applied Thermal Engineering,2016(99):741-750.
[4]SUN X,CHAI G,BAO Y.Ultimate bearing capacity analysis of a reactor pressure vessel subjected to pressurized thermal shock with XFEM [J].Engineering Failure Analysis,2017(80):102-111.
[5]SI J,YAN Z R,LUO X M,et al.Low cycle fatigue crack growth behavior of modified rotor steel under high-temperature [J].Procedia Engineering,2015(130):1066-1074.
[6]CHEN M,LU F,WANG R,et al.Structural integrity assessment of the reactor pressure vessel under the pressurized thermal shock loading [J].Nuclear Engineeringand Design,2014(272):84-91.
[7]KANDIL A.Analysis of thick-walled cylindrical pressure vessels under the effect of cyclic internal pressure and cyclic temperature [J].International Journal of Mechanical Sciences,1996,38(12):1319-1332.
[8]BARSOUM I,LAWAL S A,SIMMONS R J,et al.Failure analysis of a pressure vessel subjected to an internal blast load [J].Engineering Failure Analysis,2018(91):354-369.
[9]陈俊文,郭艳林,鲁国文,等.液态乙烷管道相变工况低温特性探讨[J].天然气与石油,2017,35(5):45-50. CHEN Junwen,GUO Yanlin,LU Guowen,et al.Study on low temperature characteris of liquid ethane pipeline under phase change condition [J].Natural Gas and Oil,2017,35(5):45-50.
[10]刘卫国,姚安林,李又绿,等.冲击载荷作用下含裂纹高压埋地输气管道的安全性评定[J].固体力学学报,2010,31(S1):109-114. LIU Weiguo,YAO Anlin,LI Youlyu,et al.Safety evaluation of high pressure buried gas pipeline with crack under impact load [J].Chinese Journal of Solid Mechanics,2010,31(S1):109-114.
[11]孙伟栋.基于ABAQUS的油气管道内部裂纹应力分析 [J].冶金与材料,2020,40(4):77-78. SUN Weidong.Stress analysis of oil and gas pipeline internal crack based on ABAQUS [J].Metallurgy and Materials,2020,40(4):77-78.
[12]贾江鸿.热采井套损机理及套管强度优化设计[J].中国安全生产科学技术,2011,7(9):121-125. JIA Jianghong.Casing loss mechanism and casing strength optimization design of thermal recovery well [J].Journal of Safety Science and Technology,2011,7(9):121-125.
[13]甘舜仙.有限元技术与程序[M].北京:北京理工大学出版社,1988:345-348.
[14]JEYAKUMAR M,CHRISTOPER T.Influence of residual stresses on failure pressure of cylindrical pressure vessels [J].Chinese Journal of Aeronautics,2013,6(26):66-72.

相似文献/References:

[1]刘鹏刚,高启荣,张璇,等.基于信息融合的天然气采气管线安全性评价[J].中国安全生产科学技术,2011,7(7):97.
 Liu Peng-gang Gao Qi-rong Zhang Xuan Yang Hong-gang.Safety evaluation of natural gas pipeline based on information fusion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(12):97.

备注/Memo

备注/Memo:
收稿日期: 2021-02-23
* 基金项目: 四川省重点研发项目(2020YFG0180);国家自然科学基金项目(51974271);中国石油新疆油田分公司项目CQYC-2020-133)
作者简介: 杨晓丽,硕士,高级工程师,主要研究方向为油气安全工程。
通信作者: 周兆明,博士,副教授,主要研究方向为油气安全工程,油气检测。
更新日期/Last Update: 2022-01-16