|本期目录/Table of Contents|

[1]唐杰兵,等.矩形巷道矿震应力波扩散规律谱元法分析*[J].中国安全生产科学技术,2021,17(9):32-38.[doi:10.11731/j.issn.1673-193x.2021.09.005]
 TANG Jiebing,JU Wenjun,JIAO Jiankang,et al.Spectral element analysis on stress wave diffusion laws of mine earthquake in rectangular roadway[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(9):32-38.[doi:10.11731/j.issn.1673-193x.2021.09.005]
点击复制

矩形巷道矿震应力波扩散规律谱元法分析*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
17
期数:
2021年9期
页码:
32-38
栏目:
学术论著
出版日期:
2021-09-30

文章信息/Info

Title:
Spectral element analysis on stress wave diffusion laws of mine earthquake in rectangular roadway
文章编号:
1673-193X(2021)-09-0032-07
作者:
唐杰兵鞠文君焦建康陈法兵
(1.煤炭科学研究总院 开采研究分院,北京 100013;
2.中煤科工开采研究院有限公司,北京 100013;
3.天地科技股份有限公司 开采设计事业部,北京 100013)
Author(s):
TANG Jiebing JU Wenjun JIAO Jiankang CHEN Fabing
(1.Beijing Mining Research Institute,China Coal Research Institute,Beijing 100013,China;
2.Coal Mining Research Institute Co.,Ltd.,China Coal Technology & Engineering Group,Beijing 100013,China;
3.Coal Mining & Designing Department,Tiandi Science & Technology Co.,Ltd.,Beijing 100013,China)
关键词:
矩形巷道应力波谱元法质点最大振动速度
Keywords:
rectangular roadway stress wave spectral element method peak particle velocity
分类号:
X936;TD324
DOI:
10.11731/j.issn.1673-193x.2021.09.005
文献标志码:
A
摘要:
为明晰矿震在巷道围岩中的应力波扩散规律,采用SPECFEM2D程序包谱元法数值模拟方法,研究二维模型在有无矩形巷道情况下应力波扩散过程以及质点最大振动速度PPV值分布规律。结果表明:巷道受S波影响大于受P波影响的程度。巷道表面应力波叠加现象明显,且背波侧巷道左帮上半部分PPV值最大,但深入围岩内部后有巷道时小于无巷道时的PPV值。巷道迎波侧PPV值较背波侧大,且分布范围大,背波侧出现了应力波屏蔽区。巷道顶底板主要受水平方向应力波影响,两帮主要受垂直方向应力波影响。研究结果对理解应力波在矩形巷道周围的扩散规律有一定的参考作用,并对矿震应力波作用下的巷道支护有一定借鉴意义。
Abstract:
In order to understand the stress wave diffusion laws of mine earthquake in the surrounding rock of roadway,the SPECFEM2D package spectral element method was used to study the stress wave diffusion process of two-dimensional model with or without the rectangular roadway and the distribution laws of peak particle velocity PPV value.The results showed that the influence degree of S wave on the roadway was greater than that of P wave.The superposition of stress waves on the roadway surface was obvious,and the PPV value on the upper part of left side of the roadway on the back wave side was the largest,but the PPV value was smaller when there was a roadway deep into the surrounding rock than when there was no roadway.The PPV value on the front wave side of the roadway was larger than that of the back wave side,and the distribution range was large,while there was a stress wave shielding area on the back wave side.The roof and floor of roadway were mainly affected by the horizontal stress wave,and the two sides were mainly affected by the vertical stress wave.The research has a certain reference for understanding the diffusion laws of stress wave around the rectangular roadway,and has a certain reference significance for the roadway support under the action of mine earthquake stress wave.

参考文献/References:

[1]曹安业.采动煤岩冲击破裂的震动效应及其应用研究[D].徐州:中国矿业大学,2009.
[2]KONDRAT’YEV Y U V,DARAGAN S,LYUKE Y,et al.The spectra of longitudinal and converted seismic waves as a function of underground explosion energy[J].Izvestiya,Academy of Sciences,USSR:Physics of the Solid Earth,1984,20,262.
[3]WANG Zhengyi,DOU Linming,WANG Guifeng,et al.Resisting impact mechanical analysis of an anchored roadway supporting structure under p-wave loading and its application in rock burst prevention[J].Arabian Journal of Geosciences,2018,11(5):81.
[4]WANG Z Y,DOU L M,WANG G F.Mechanism analysis of roadway rockbursts induced by dynamic mining loading and its application[J].Energies,2018,11(9),2313.
[5]MUDAU A,STACEY T R,GOVENDER R A.Experimental investigations into sacrificial support for containment of rockburst damage[C]//In Proceedings of the eighth International conference on deep and high stress mining.Australian Centre for Geomechanics,2017,435-446.
[6]ZHANG Kaizhi,JI Songtao,et al.MEMS Inertial sensor for strata stability monitoring in underground mining:an experimental study[J].Shock and Vibration,2018(6):1-8.
[7]DONG Li,ZHANG Junfei,WANG Cunwen,et al.Propagation patterns of microseismic waves in rock strata during mining:an experimental study[J].International Journal of Minerals,Metallurgy and Materials,2019,26(5):531-537.
[8]段宏飞,姜振泉,朱术云,等.大埋深高地压弱结构面顶板岩层诱发冲击地压离心模型试验[J].中南大学学报(自然科学版),2011,42(9):2774-2782. DUAN Hongfei,JIANG Zhenquan,ZHU Shuyun,et al.Centrifugal model test of rock burst induced by roof strata of high ground pressure weak structural plane at large buried depth [J].Journal of Central South University (Natural Science Edition),2011,42(9):2774-2782.
[9]吴拥政,陈金宇,焦建康,等.冲击载荷作用下锚固围岩损伤破坏机制[J].煤炭学报,2018,43(9):2389-2397. WU Yongzheng,CHEN Jinyu,JIAO Jiankang,et al.Damage and failure mechanism of anchorage surrounding rock under impact load [J].Journal of China Coal Society,2018,43(9):2389-2397.
[10]RAFFALDI M J,LOKEN M C.Framework for simulating fracture,ejection,and restraint of rock around a mine drift subjected to seismic loading[C]//In 50th US Rock Mechanics/Geomechanics Symposium.American Rock Mechanics Association,2016.
[11]张诗淮,吴顺川,陈子健.低频动载应力波传播规律及颗粒流模拟方法研究[J].岩石力学与工程学报,2016,35(8):1555-1568. ZHANG Shihuai,WU Shunchuan,CHEN Zijian.Study on low frequency dynamic stress wave propagation law and particle flow simulation method [J].Journal of Rock Mechanics and Engineering,2016,35(8):1555-1568.
[12]冯俊军.应力波产生机制及对冲击地压影响研究[D].徐州:中国矿业大学,2016.
[13]WANG Xin,CAI Ming.Influence of wavelength-to-excavation span ratio on ground motion around deep underground excavations[J].Tunnelling and Underground Space Technology,2015,49:438-453.
[14]PATERA A T.A spectral element method for fluid dynamics:Laminar flow in a channel expansion[J].Journal of Computational Physics,1984,54(3):468-488.
[15]GHARTI H N,OYE V,KOMATITSCH D,et al.Simulation of multistage excavation based on a 3D spectral-element method[J].Computers & Structures,2012,100-101:54-69.
[16]KOMATITSCH D.Introduction to the spectral-element method for 3-D seismic wave propagation[J].Geophysical Journal of the Royal Astronomical Society,2010,139.
[17]MADAY Y,PATERA A T.Spectral element methods for the incompressible navier-stokes equations[J].State-of-the-Art Surveys on Computational Mechanics,York:ASME,1989.71-413.
[18]MISHRA B S P,DEHURI S.Parallel computing environments:areview[J].Iete Technical Review,2011,28(3):240-247.
[19]向新民.谱方法的数值分析[M].北京:科学出版社,2000.
[20]KOMATITSCH D,TROMP J.A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation[J].Geophysical Journal of the Royal Astronomical Society,2010,154(1):146-153.
[21]ESSEN K,BOHLEN T,FRIEDERICH W,et al.Modelling of rayleigh-type seam waves in disturbed coal seams and around a coal mine roadway[J].Geophysical Journal International,2007(2):511-526.
[22]WANG Xin,CAI Ming.A method to estimate shear quality factor of hard rocks[J].Pure and Applied Geophysics,2017,174(7):2689-2703.
[23]王童奎,李瑞华,李小凡,等.谱元法数值模拟地震波传播[J].防灾减灾工程学报,2017,16(4):1672-2132. WANG Tongkui,LI Ruihua,LI Xiaofan,et al.Numerical simulation of seismic wave propagation by spectral element method [J].Journal of Disaster Prevention and Mitigation Engineering,2017,16(4):1672-2132.

相似文献/References:

[1]刘佳亮,张娣.水力侵彻煤岩液固非接触区应力波传播特性研究[J].中国安全生产科学技术,2018,14(7):92.[doi:10.11731/j.issn.1673-193x.2018.07.014]
 LIU Jialiang,ZHANG Di.Study on propagation characteristics of stress wave in liquidsolid noncontact area of coal rock with hydraulic penetration[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(9):92.[doi:10.11731/j.issn.1673-193x.2018.07.014]
[2]赵敏,周子豪.爆炸荷载下地铁隧道损伤规律研究[J].中国安全生产科学技术,2019,15(8):118.[doi:10.11731/j.issn.1673-193x.2019.08.019]
 ZHAO Min,ZHOU Zihao.Study on damage laws of subway tunnel under explosive load[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(9):118.[doi:10.11731/j.issn.1673-193x.2019.08.019]

备注/Memo

备注/Memo:
收稿日期: 2021-01-12
* 基金项目: 天地科技股份有限公司科技创新创业专项基金项目(2020-TD-QN008);国家自然科学基金项目(51804159)
作者简介: 唐杰兵,博士研究生,主要研究方向为煤矿冲击地压。
更新日期/Last Update: 2021-10-02