|本期目录/Table of Contents|

[1]马少坤,黄骁,韦榕宽,等.考虑滚动阻抗的线性接触模型离散元宏细观参数敏感性研究*[J].中国安全生产科学技术,2021,17(6):104-110.[doi:10.11731/j.issn.1673-193x.2021.06.017]
 MA Shaokun,HUANG Xiao,WEI Rongkuan,et al.Study on sensitivity of macro and micro parameters of discrete element in linear contact model considering rolling resistance[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(6):104-110.[doi:10.11731/j.issn.1673-193x.2021.06.017]
点击复制

考虑滚动阻抗的线性接触模型离散元宏细观参数敏感性研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
17
期数:
2021年6期
页码:
104-110
栏目:
职业安全卫生管理与技术
出版日期:
2021-06-30

文章信息/Info

Title:
Study on sensitivity of macro and micro parameters of discrete element in linear contact model considering rolling resistance
文章编号:
1673-193X(2021)-06-0104-07
作者:
马少坤黄骁韦榕宽刘莹段智博
(1.广西大学 土木建筑工程学院,广西 南宁 530004;
2.广西大学 工程防灾与结构安全重点实验室,广西 南宁 530004)
Author(s):
MA Shaokun HUANG Xiao WEI Rongkuan LIU Ying DUAN Zhibo
(1.College of Civil Engineering and Architecture,Guangxi University,Nanning Guangxi 530004,China;
2.Key Laboratory of Disaster Prevention and Structural Safety,Guangxi University,Nanning Guangxi 530004,China)
关键词:
离散元抗转动作用宏细观参数敏感性分析
Keywords:
discrete element rolling resistance macro and micro parameters sensitivity analysis
分类号:
X947;TU43
DOI:
10.11731/j.issn.1673-193x.2021.06.017
文献标志码:
A
摘要:
为克服无黏性土的离散元研究中未考虑颗粒间抗转动作用的缺陷,基于抗转动线性接触模型开展一系列排水固结三轴压缩模拟试验,结合随机森林算法详细探讨抗转动线性接触模型中各细观参数(有效模量、刚度比、摩擦系数、抗转动系数)与试样的宏观参数(初始弹性模量、泊松比、峰值强度)间的关系。结果表明:颗粒有效模量的提高会使试样的初始弹性模量提高而泊松比提高,权重值分别为0.695 14和0.201 57;刚度比的增加会使试样的初始弹性模量降低而泊松比提高,权重值分别为0.751和0.193 64;抗转动系数与摩擦系数提高会显著提高试样的抗剪强度,权重值分别为0.564 72和0.427 5;抗转动系数对试样的剪胀性具有显著影响。
Abstract:
In order to overcome the defect of ignoring the rolling resistance between particles in the discrete element research of cohesionless soil,a series of drained consolidation triaxial compression simulation tests were conducted based on the rolling resistance linear contact model,and the relationship between the micro parameters (effective modulus,stiffness ratio,friction coefficient and rolling resistance coefficient) and macro parameters (initial elastic modulus,Poisson’s ratio,peak strength) of the samples in the rolling resistance linear contact model was discussed in detail combining with the random forest algorithm.The results showed that with the increase of the effective modulus of particles,the initial elastic modulus of the sample increased,while the Poisson’s ratio decreased,and the weights was 0.695 14 and 0.201 57,respectively.With the increase of stiffness ratio,the initial elastic modulus of the sample decreased,while the Poisson’s ratio increased,and the weights was 0.751 and 0.193 64,respectively.The increase of rolling resistance coefficient and friction coefficient would significantly increase the shear strength of the sample,and the weights was 0.564 72 and 0.427 5,respectively.The rolling resistance coefficient had significant influence on the dilatancy of the sample.

参考文献/References:

[1]李健,杨梅.高填路堤边坡失稳机理与处治措施分析[J].中国安全生产科学技术,2016,12(10):113-117. LI Jian,YANG Mei.Analysis on failure mechanism and treatment measures of high-filling embank-ment slope[J].Journal of Safety Science and Technology,2016,12(10):113-117.
[2]安亚雄,郑君长,张翾.软岩隧道塌方事故致灾因素耦合分析[J].中国安全生产科学技术,2021,17(1):122-128. AN Yaxiong,ZHENG Junchang,ZHANG Xuan.Coupling analysis on accident-causing factors of collapse accidents in soft rock tunnel[J].Journal of Safety Science and Technology,2021,17(1):122-128.
[3]CUNDALL P A,STRACK O D.A discrete numerical model for granular assemblies[J].Géotechnique,1979,29(1),47-65.
[4]周健,池毓蔚,池永,等.砂土双轴试验的颗粒流模拟[J].岩土工程学报,2000,22(6):701-704. ZHOU Jian,CHI Yuwei,CHI Yong,et al.Simulation of biaxial test on sand by particle flow code [J].Chinese Journal of Geotechnical Engineering,2000,22(6):701-704.
[5]曾远,周健.砂土的细观参数对宏观特性的影响研究[J].地下空间与工程学报,2008(3):107-111. ZENG Yuan,ZHOU Jian.Influence of micro parameters of sandy soil on its macro properties[J].Chinese Journal of Underground Space and Engineering,2008(3):107-111.
[6]陈亚东,于艳,佘跃心.PFC~(3D)模型中砂土细观参数的确定方法[J].岩土工程学报,2013(S2):88-93. CHEN Yadong,YU Yan,SHE Yuexin.Method for determining mesoscopic parameters of sand in three-dimensional particle flow code numerical modeling[J].Chinese Journal of Geotechnical Engineering,2013(S2):88-93.
[7]徐小敏,凌道盛,陈云敏,等.基于线性接触模型的颗粒材料细-宏观弹性常数相关关系研究[J].岩土工程学报,2010(7):7-14. XU Xiaomin,LING Daosheng,CHEN Yunmin,et al.Correlation of microscopic and macroscopic elastic constants of granular materials based on linear contact model[J].Chinese Journal of Geotechnical Engineering,2010(7):7-14.
[8]IWASHITA K,ODA M.Rolling resistance at contacts in simulation of shear band development by DEM[J].Journal of Engineering Mechanics,1998,124(3):285-292.
[9]蒋明镜,李秀梅,胡海军.含抗转能力散粒体的宏微观力学特性数值分析[J].计算力学学报,2011,28(4):622-628. JIANG Mingjing,LI Xiumei,HU Haijun.Numerical investigation on macro micro mechanical behaviors of granular materials incorporating rolling resistance[J].Chinese Journal of Computational Mechanics,2011,28(4):622-628.
[10]周喻,吴顺川,焦建津,等.基于BP神经网络的岩土体细观力学参数研究[J].岩土力学,2011,32(12):3821-3826. ZHOU Yu,WU Shunchuan,JIAO Jianjin,et al.Research on mesomechanical parameters of rock and soil mass based on BP neural network[J].Rock and Soil Mechanics,2011,32(12):3821-3826.
[11]李澄清,刘天为,张海洋,等.基于BP神经网络的土体细观力学参数反演分析[J].工程地质学报,2015,23(4):609-615. LI Chengqing,LIU Tianwei,ZHANG Haiyang,et al.Back-analysis on micromechanical parameters of soil mass using bp neural network[J].Journal of Engineering Geology,2015,23(4):609-615.
[12]崔洋洋.砂土材料离散元细观参数的自动识别[D].北京:北方工业大学,2019.
[13]TSUNAKAWA H,KUNII D,TAKAGI F,et al.Comparing the flow properties of bulk solids by tri-axial shear tests,unconfined yield tests and direct shear tests[J].Journal of the Society of Powder Technology Japan,1986,23(9):678-684.
[14]朱俊高,郭万里,徐佳成,等.级配和密实度对粗粒土三轴试验影响离散元分析[J].重庆交通大学学报(自然科学版),2017,36(6):70-74. ZHU Jungao,GUO Wanli,XU Jiacheng,et al.DEM analysis on impact of gradation and compactness on coarse-grained soil in tri-axial test[J].Journal of Chongqing Jiaotong University (Natural Science),2017,36(6):70-74.
[15]LIAW A,WIENER M.Classification and regression by random Forest[J].R news,2002,2(3):18-22.
[16]王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北大学出版社,1991.

相似文献/References:

[1]赵丽娟,樊志海,周文.煤岩破落过程中螺旋滚筒的可靠性研究[J].中国安全生产科学技术,2017,13(7):100.[doi:10.11731/j.issn.1673-193x.2017.07.016]
 ZHAO Lijuan,FAN Zhihai,ZHOU Wenchao.Study on reliability of spiral drum in the breaking and falling process of coal and rock[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(6):100.[doi:10.11731/j.issn.1673-193x.2017.07.016]
[2]赵博,苏亚中,丛巍,等.疏松砂岩油气藏出砂风险及机理离散元分析*[J].中国安全生产科学技术,2020,16(11):59.[doi:10.11731/j.issn.1673-193x.2020.11.009]
 ZHAO Bo,SU Yazhong,CONG Wei,et al.Discrete element analysis on sand production risk and mechanism in unconsolidated sandstone oil and gas reservoir[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(6):59.[doi:10.11731/j.issn.1673-193x.2020.11.009]
[3]杨忠民,张玉芳,李健,等.软弱围岩节理性质对隧道塌方范围影响研究*[J].中国安全生产科学技术,2020,16(12):143.[doi:10.11731/j.issn.1673-193x.2020.12.023]
 YANG Zhongmin,ZHANG Yufang,LI Jian,et al.Study on influence of joint properties of weak surrounding rock on range of tunnel collapse[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(6):143.[doi:10.11731/j.issn.1673-193x.2020.12.023]
[4]叶来宾,李梦可,蒲松,等.在高地应力作用下近水平岩层隧道掌子面稳定性分析及控制*[J].中国安全生产科学技术,2022,18(11):119.[doi:10.11731/j.issn.1673-193x.2022.11.017]
 YE Laibin,LI Mengke,PU Song,et al.Stability analysis and control of tunnel face in near horizontal strata under high ground stress[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(6):119.[doi:10.11731/j.issn.1673-193x.2022.11.017]
[5]蒙文富,代张音,陈有成,等.软硬互层型平缓反倾岩质斜坡采动变形破坏机理研究*[J].中国安全生产科学技术,2024,20(3):103.[doi:10.11731/j.issn.1673-193x.2024.03.015]
 MENG Wenfu,DAI Zhangyin,CHEN Youcheng,et al.Study on mining-induced deformation and failure mechanism of soft and hard interbedded gentle counter-inclined rocky slopes[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(6):103.[doi:10.11731/j.issn.1673-193x.2024.03.015]

备注/Memo

备注/Memo:
收稿日期: 2020-12-24
* 基金项目: 国家自然科学基金项目(41362016,51678166,51968005);广西岩土力学与工程重点实验室开放基金项目(16-KF-01);广西自然科学基金重点项目(2020GXNSFDA238024);广西研究生教育创新计划项目(YCBZ2020024)
作者简介: 马少坤,博士,教授,主要研究方向为地下工程。
通信作者: 段智博,博士研究生,主要研究方向为地下工程。
更新日期/Last Update: 2021-07-07