|本期目录/Table of Contents|

[1]李静野,蒋新生,李进,等.长径比对管道油气爆炸特性与火焰传播规律影响研究*[J].中国安全生产科学技术,2020,16(8):88-94.[doi:10.11731/j.issn.1673-193x.2020.08.014]
 LI Jingye,JIANG Xinsheng,LI Jin,et al.Study on influence of lengthdiameter ratio on explosion characteristics and flame propagation laws of gasolineair mixture in pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(8):88-94.[doi:10.11731/j.issn.1673-193x.2020.08.014]
点击复制

长径比对管道油气爆炸特性与火焰传播规律影响研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
16
期数:
2020年8期
页码:
88-94
栏目:
职业安全卫生管理与技术
出版日期:
2020-08-31

文章信息/Info

Title:
Study on influence of lengthdiameter ratio on explosion characteristics and flame propagation laws of gasolineair mixture in pipeline
文章编号:
1673-193X(2020)-08-0088-07
作者:
李静野蒋新生李进余彬彬张霖赵亚东
(中国人民解放军陆军勤务学院 油料系,重庆 401331)
Author(s):
LI Jingye JIANG Xinsheng LI Jin YU Binbin ZHANG Lin ZHAO Yadong
(Department of Petroleum Supply Engineering,Logistical Engineering University,Chongqing 401331,China)
关键词:
长径比爆炸特征参数火焰传播特性油气安全防护技术
Keywords:
lengthdiameter ratio explosion characteristic parameter flame propagation characteristic gasolineair safety protection technology
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2020.08.014
文献标志码:
A
摘要:
为了探究长径比对油气爆炸传播特性与火焰传播规律的影响,为复杂管道受限空间油气爆炸防控提供理论参考,结合油气爆炸与爆炸抑制工程实际需要,构建不同长径比管道油气爆炸模拟实验系统,在此基础上开展不同初始浓度的预混油气-空气混合气爆炸实验。研究结果表明:管道内部的预混油气爆炸超压信号呈先上升后下降的趋势,由于耗散以及憋压效应导致超压下降平稳后仍大于初始压力;同时长径比增加会导致达到最大爆炸超压的油气浓度增加,油气爆炸超压峰值随着长径比的增加呈现上升→下降→上升的规律,小长径比管道的油气爆炸超压峰值高于大长径比管道,但同为小长径比管道或大长径比管道工况的实验结果对比显示爆炸超压峰值随着长径比增加而提升;而超压上升速率则会随着长径比的增加而上升;长径比的增加同时也会促进火焰的加速传播并减小火焰持续时间。
Abstract:
In order to explore the influence of lengthdiameter ratio on the explosion characteristics and flame propagation laws of gasolineair mixture,and provide theoretical reference for the prevention and control of gasolineair mixture explosion in the confined space of complex pipelines,combined with the actual requirements of gasolineair mixture explosion and explosion suppression engineering,a simulation experimental system of the gasolineair mixture explosion in the pipelines with different lengthdiameter ratios was established,and on this basis,the explosion experiments of premixed gasolineair mixture with different initial concentrations were conducted.The results showed that the overpressure signals of premixed gasolineair mixture explosion inside the pipeline increased first and then decreased,and the overpressure was still greater than the initial pressure after decreasing to be stable due to the dissipation and pressure holding effect.At the same time,the increase of lengthdiameter ratio led to an increase in the concentration of gasolineair mixture that reached the maximum explosion overpressure.The peak overpressure of gasolineair mixture explosion presented the trend of risingdecreasingrising with the increase of lengthdiameter ratio,and the peak overpressure of the pipeline with small lengthdiameter ratio was greater than that of the pipeline with large lengthdiameter ratio,but the comparison of experimental results for the conditions of pipeline with small lengthdiameter ratio or pipeline with large lengthdiameter ratio showed that the explosion peak overpressure increased with the increase of lengthdiameter ratio.The rising rate of overpressure increased with the increase of lengthdiameter ratio,and the increase of lengthdiameter ratio would also promote the accelerated propagation of flame and reduce the flame duration.

参考文献/References:

[1]MA G W,HUANG Y M,LI J D.Risk analysis methods for gas explosion[M].Risk Analysis of Vapour Cloud Explosions for Oil and Gas Facilities,2019.
[2]WEI S W,JIANG X S,XU J N,et al.Experiment study on the gasoline-air mixture explosion suppression in a long-narrow confined space[J].Journal of Vibration & Shock,2017,36(10):51-56,62.
[3]ZHANG P L,DU Y.Experimental estimation of the combustion regime in the oil-gas explosion process[J].Explosion & Shock Waves,2016.
[4]VK CHEEDA,A KUMAR,K.RAMAMURTH I.Influence of height of confined space on explosion and fire safety[J].Fire Safety Journal,2015,76:31-38.
[5]WANG D,DU Y,JIANG X S,et al.Experimental study on dispersion and explosion process of fuel-air mixture in underground fuel depot[C]//Applied Mechanics and Materials.Trans Tech Publications Ltd,2014,590:261-265.
[6]QI S,DU Y,ZHANG P L,et al.Experimental study of gasoline vapor deflagration in a duct with an open end[J].Combustion and Flame,2018,193:16-24.
[7]SUN Z Y,LI G X.Turbulence influence on explosion characteristics of stoichiometric and rich hydrogen/air mixtures in a spherical closed vessel[J].Energy Conversion & Management,2017,149:526-535.
[8]SHEN S L,ZHANG Q,MA Q J,et al.Effect of Turbulence on explosion characteristics of aluminum dust/Air[J].Acta Armamentarii,2016,37(3):455-461.
[9]庞磊,吕鹏飞,栾婷婷.容器长径比对铝合金网状材料抑爆性评价的影响[J].中国安全科学学报,2016,26(4):46-49. PANG Lei,LYU Pengefei,LUAN Tingting.Effect of length-diameter ratio of vessel on explosion suppression performance evaluation of aluminum alloy mesh material[J].China Safety Science Journal,2016,26(4):46-49.
[10]李重情,穆朝民,许登科,等.空腔长度对瓦斯爆炸冲击波传播影响研究[J].采矿与安全工程学报,2018,35(6):1293-1300. LI Zhongqing,MU Chaoming,XU Dengke,et al.Influence of cavity length on shock wave propagation of gas explosion[J].Journal of Mining & Safety Enginerring,2018,35(6):1293-1300.
[11]韦世豪,杜扬,王世茂,等.不同形状受限空间内油气爆燃特性的实验研究[J].中国安全生产科学技术,2017,13(5):41-47. WEI Shihao,DU Yang,WANG Shimao,et al.Experimental study on deflagration characteristics of gasoline-air mixture in confined space with different shapes[J].Journal of Safety Science and Technology,2017,13(5):41-47.
[12]RAZUS D,MOVILEANU C,BRINZEA V,et al.Explosion pressures of hydrocarbon-air mixtures in closed vessels[J].Journal of Hazardous Materials,2006,135(1/2/3):58-65.
[13]RAZUS D,MOVILEANUA C,OANCEA D.The rate of pressure rise of gaseous propylene-air explosions in spherical and cylindrical enclosures[J].Journal of Hazardous Materials,2007,139(1):1-8.
[14]王世茂,杜扬,李阳超,等.含弱约束结构受限空间油气爆炸外部火焰特性[J].后勤工程学院学报,2016,32(5):39-43. WANG Shimao,DU Yang,LI Yangchao,et al.External flame characteristics of gasolin-air mixture explosion in confined space with weakly constrained structure[J].Journal of Logistical Engineering University,2016,32(5):39-43.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2020-02-16
* 基金项目: 国家重点研发计划项目(2018YFC0809500,2017YFC0804705);国家自然科学基金项目(51574254);西安近代化学研究所开放基金项目 (204-J-2019-0387-1/6-16)
作者简介: 李静野,博士研究生,主要研究方向为油气安全与防护技术。
通信作者: 蒋新生,博士,教授,主要研究方向为油气安全与防护技术。
更新日期/Last Update: 2020-09-10