|本期目录/Table of Contents|

[1]刘晓勇.大跨度偏压隧道受火损伤分析[J].中国安全生产科学技术,2020,16(6):147-152.[doi:10.11731/j.issn.1673-193x.2020.06.024]
 LIU Xiaoyong.Fire damage analysis of long span unsymmetrical loading tunnel[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(6):147-152.[doi:10.11731/j.issn.1673-193x.2020.06.024]
点击复制

大跨度偏压隧道受火损伤分析
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
16
期数:
2020年6期
页码:
147-152
栏目:
职业安全卫生管理与技术
出版日期:
2020-06-30

文章信息/Info

Title:
Fire damage analysis of long span unsymmetrical loading tunnel
文章编号:
1673-193X(2020)-06-0147-06
作者:
刘晓勇
(贵州省交通规划勘察设计研究院股份有限公司,贵州 贵阳 550000)
Author(s):
LIU Xiaoyong
(Guizhou Transportation Planning Survey & Design Academe Co.,Ltd.,Guiyang Guizhou 550000,China)
关键词:
偏压隧道大跨度火灾结构损伤温度分布
Keywords:
unsymmetrical loading tunnel long span fire structural damage temperature distribution
分类号:
X947;U459
DOI:
10.11731/j.issn.1673-193x.2020.06.024
文献标志码:
A
摘要:
为探明火灾对大跨度偏压隧道造成的不利影响,依托贵州省某公路隧道工程,基于ANSYS有限元软件分析不同埋深及偏压条件下大跨度隧道结构的最大损伤和相对温度损伤变化规律,并对其温度场分布和应力分布规律进行总结。结果表明:衬砌高温损伤约60 mm,温度影响深度约300 mm,内部温升过程逐渐由曲线变化转变为直线变化;最大损伤深度随偏压角度增加近似呈指数增长变化,而相对温度损伤略有减小,当偏压角度较大时,火灾将成为隧道破坏的诱导因素而非直接因素;最大损伤深度与偏压隧道埋深近似呈抛物线变化,火灾对偏压隧道影响显著,必须采取有效预防措施;随着受火时间的增加,临火侧衬砌混凝土在热膨胀及围岩约束作用下,压应力快速增加,存在较大的压溃风险。
Abstract:
To investigate the adverse effect of fire on the long span unsymmetrical loading tunnel,based on a highway tunnel project in Guizhou Province,the change laws of the maximum damage and relative temperature damage of the long span tunnel structure under different buried depths and unsymmetrical loading conditions were analyzed based on ANSYS finite element software,and the distribution laws of temperature field and stress were summarized.The results showed that the high temperature damage of the lining was about 60 mm,the temperature influence depth was about 300 mm,and the internal temperature rise process gradually changed from curve change to linear change.The maximum damage depth changed approximately as exponential growth with the increase of the unsymmetrical loading angle,while the relative temperature damage decreased slightly.When the unsymmetrical loading angle was large,the fire would become the inducing factor of the tunnel failure rather than the direct factor.The maximum damage depth and the buried depth of the unsymmetrical loading tunnel would change approximately as the parabolic change,and the fire had significant influence on the unsymmetrical loading tunnel,so the effective prevention measures must be taken.With the increase of fire action time,the compressive stress of the lining concrete adjacent to the fire side increases rapidly under the effect of thermal expansion and surrounding rock constraints,and there is a greater risk of collapse.

参考文献/References:

[1]REN R,ZHOU H,HU Z,et al.Statistical analysis of fire accidents in chinese highway tunnels 2000—2016[J].Tunnelling and Under ground Space Technology,2019,83:452-460.
[2]罗刚.中国10 km以上超长公路隧道统计[J].隧道建设(中英文),2019,39(8):1380-1383.
[3]刘勇,徐志胜,赵望达.公路隧道火灾风险评价模型及应用[J].中国安全生产科学技术,2014,10(4):126-132. LIU Yong,XU Zhisheng,ZHAO Wangda.Fire risk assessment model of road tunnel and its application[J].Journal of Safety Science and Technology,2014,10(4):126-132.
[4]李涛,谢玮,韦涛,等.螺旋隧道火灾特性小尺寸实验研究[J].中国安全生产科学技术,2017,13(3):137-143. LI Tao,XIE Wei,WEI Tao,et al.Small-scale experimental study on characteristics of spiral tunnel fire[J].Journal of Safety Science and Technology,2017,13(3):137-143.
[5]沈奕.火灾下隧道结构温度特性及力学行为分析[J].现代隧道技术,2016,53(6):80-88. SHEN Yi.Analysis of the temperature characteristics and mechanical behaviors of tunnel structures in fires[J].Modern Tunnelling Technology,2016,53(6):80-88.
[6]CHOI S,LEE J,CHANG S.A holistic numerical approach to simulating the thermal and mechanical behaviour of a tunnel lining subject to fire[J].Tunnelling and Underground Space Technology,2013,35:122-134.
[7]FEIST C,ASCHABER M,et al.Numerical simulation of the load-carrying behavior of RC tunnel structures exposed to fire[J].Finite Elements in Analysis and Design,2009,45(12):958-965.
[8]GUO J,JIANG S,ZHANG Z.Fire thermal stress and its damage to subsea immersed tunnel[J].Procedia Engineering,2016,166:296-306.
[9]QIAO R,SHAO Z,LIU F,et al.Damage evolution and safety assessment of tunnel lining subjected to long-duration fire[J].Tunnelling and Underground Space Technology,2019,83:354-363.
[10]田宇,卢文良,方继伟,等.某混凝土公路桥火灾后损伤评定[J].中外公路,2018,38(3):119-124.
[11]张旭慧,李斐然,石磊,等.桥面过火后的预应力混凝土T梁分析与加固[J].中外公路,2019,39(4):181-185.
[12]朱合华,周龙,沈奕,等.火灾高温下盾构衬砌结构试验与力学模型综述[J].中国公路学报,2017,30(8):15-23,48. ZHU Hehua,ZHOU Long,SHEN Yi,et al.Review of experiments and mechanical models of shield lining structure exposed to high temperature[J].China Journal of Highway and Transport,2017,30(8):15-23,48.
[13]JIN L,ZHANG R,DU X.Characterisation of temperature-dependent heat conduction in heterogeneous concrete[J].Magazine of Concrete Research,2018,70:325-339.
[14]段文玺.建筑结构的火灾分析和处理(二)——火灾温度场计算之一[J].工业建筑,1985,1(8):51-54.
[15]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2020-02-26
* 基金项目: 贵州省科技重大专项项目([2018]3011)
作者简介: 刘晓勇,硕士,高级工程师,主要研究方向为隧道安全及工程管理。
更新日期/Last Update: 2020-07-07