|本期目录/Table of Contents|

[1]张守旸,汪海波,宗琦,等.玻璃纤维-砂浆管试件动态拉伸破坏特性试验研究[J].中国安全生产科学技术,2020,16(5):89-94.[doi:10.11731/j.issn.1673-193x.2020.05.014]
 ZHANG Shouyang,WANG Haibo,ZONG Qi,et al.Experimental study on dynamic tensile failure characteristics of glass fibermortar tube specimens[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(5):89-94.[doi:10.11731/j.issn.1673-193x.2020.05.014]
点击复制

玻璃纤维-砂浆管试件动态拉伸破坏特性试验研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
16
期数:
2020年5期
页码:
89-94
栏目:
职业安全卫生管理与技术
出版日期:
2020-05-30

文章信息/Info

Title:
Experimental study on dynamic tensile failure characteristics of glass fibermortar tube specimens
文章编号:
1673-193X(2020)-05-0089-07
作者:
张守旸汪海波宗琦王梦想
(安徽理工大学 土木建筑学院,安徽 淮南 232001)
Author(s):
ZHANG Shouyang WANG Haibo ZONG Qi WANG Mengxiang
(School of Civil Engineering and Architecture,Anhui University of Science and Technology,Huainan Anhui 232001,China)
关键词:
SHPBGFRP管砂浆动态巴西劈裂试验破碎形态
Keywords:
split Hopkinson pressure bar (SHPB) glass fiber reinforced plastic (GFRP) tube mortar dynamic Brazilian split test failure mode
分类号:
X951TU398
DOI:
10.11731/j.issn.1673-193x.2020.05.014
文献标志码:
A
摘要:
为了探究动载作用下GFRP(玻璃纤维)-砂浆管的动态拉伸破坏特性,采用分离式SHPB试验装置对2种空心率的水泥砂浆管和GFRP-砂浆管进行动态拉伸试验。结果表明:空心率越小、冲击气压和壁厚越大,试件峰值抗拉强度越大;GFRP-砂浆管的峰值抗拉强度随GFRP管壁厚的增大而不断增大,在空心率为0.292时,峰值抗拉强度随GFRP管壁厚增大呈对数函数递增,而在空心率0.187时,峰值抗拉强度随GFRP管壁厚增大呈指数函数递增;无GFRP管时水泥砂浆管呈对称四块破碎,GFRP-砂浆管在0.5~0.7 MPa冲击气压下仅有细小裂纹产生,在0.8 MPa冲击气压下,与入射杆接触部分产生“楔形”破坏,但总体保持为管状、破坏程度仍低于水泥砂浆管,表明GFRP管对水泥砂浆管具有较好的保护作用,可有效提高其动态抗拉强度。
Abstract:
In order to investigate the dynamic tensile failure characteristics of glass fiber reinforced plastic (GFRP)-mortar tube under the dynamic loading,the dynamic tensile tests on the cement mortar tube and GFRP-mortar tube with two kinds of hollow ratio were conducted by using the split SHPB test device.The results showed that the smaller the hollow ratio and the larger the impact pressure and wall thickness,the greater the peak tensile strength of the specimen.The peak tensile strength of GFRP-mortar tube increased continuously with the increase of the wall thickness of GFRP tube.When the hollow ratio was 0.292,the peak tensile strength decreased as a logarithmic function as the wall thickness of GFRP tube increased,while when the hollow ratio was 0.187,the peak tensile strength increased as a logarithmic function as the wall thickness of GFRP tube increased.When there was no GFRP tube,the cement mortar tube was broken into four symmetrical pieces,while under the impact pressure of 0.5 MPa-0.7 MPa,the GFRP-mortar tube had only small cracks,and under the impact pressure of 0.8 MPa,the parts in contact with the incident bar had the “wedgeshaped” failure,but it remained tubular as a whole,and the failure degree was still lower than that of cement mortar tubes,which indicated that GFRP tube has good protective effect on the cement mortar tube,and can effectively improve its dynamic tensile strength.

参考文献/References:

[1]吕志涛.高性能材料FRP应用与结构工程创新[J].建筑科学与工程学报,2005,22(1):1-5.LYU Zhitao.Application of high performance FRP and innovations of structure engineering[J].Journal of Architecture and Civil Engineering,2005,22(1):1-5.
[2]付永刚,李英明,张瀚.大采高仰斜工作面玻璃纤维增强塑料锚杆煤壁加固技术及应用[J].中国安全生产科学技术,2013,9(6):5-10.FU Yonggang,LI Yingming.ZHANG Han.Coal wall reinforcing technology and its application with FRP bolts in the rise mining with great mining height[J].Journal of Safety Science and Technology,2013,9(6):5-10.
[3]李佩云,郝伟.中小型在役桥梁安全预警研究[J].中国安全生产科学技术,2015,11(7):150-155.LI Peiyun,HAO Wei.Study on early-warning of middle and small existing bridge[J].Journal of Safety Science and Technology,2015,11(7):150-155.
[4]王龙轩,杜文风,鄢远东,等.FRP-混凝土-钢组合长柱的轴心受压实验研究[J].河南大学学报(自然科学版),2018,48(4):451-456.WANG Longxuan,DU Wenfeng,YAN Yuandong,et al.Experimental research on hybrid FRP-concrete-steel long columns subjected to axial pressure[J].Journal of Henan University(Natural Science),2018,48(4):451-456.
[5]魏洋,吴刚,吴智深,等.纤维增强复合材料-钢复合管混凝土受弯构件的试验研究[J].工业建筑,2011,41(11):116-119.WEI Yang,WU Gang,WU Zhishen,et al.Experimental study on FRP-steel composite tube concrete flexural components[J].Industrial Construction,2011,41(11):116-119.
[6]曾岚,李丽娟,陈光明,等.GFRP-再生混凝土-钢管组合柱轴压力学性能试验研究[C]//中国土木工程学会—广州大学.第八届全国防震减灾工程学术研讨会论文集,2014:21-27.
[7]刘明学,钱稼茹.FRP-混凝土-钢双壁空心管的截面弯矩-曲率全曲线[J].清华大学学报(自然科学版),2007,47(12):2105-2110.LIU Mingxue,QIAN Jiaru.Moment-curvature relationships of FRP-concrete-steel Double-skin tubular members[J].Journal of Tsinghua University(Science and Technology),2007,47(12):2105-2110.
[8]杨俊杰,周涛,章雪峰.FRP管实心混凝土柱承载力的轴压试验研究[J].建筑结构,2014,44(22):72-75.YANG Junjie,ZHOU Tao,ZHANG Xuefeng.Experimental research on bearing capacity of FRP tube solidconcrete column under axial loading[J].Building Structure,2014,44(22):72-75.
[9]LI X,LYU H L,ZHANG G C,et al.Seismic retrofitting of rectangular reinforced concrete columns using fiber composites for enhanced flexural strength[J].Journal of Reinforced Plastics and Composites,2013,32(9):619-630.
[10]SHI Y L,ZOHREVAND P,MIRMIRAN A.Assessment of cyclic behavior of hybrid FRP concrete columns[J].American Society of Civil Engineers,2013,18(6):553-563.
[11]王庆利,张永丹,谢广鹏,等.圆截面CFRP-钢管混凝土柱的偏压试验[J].沈阳建筑大学学报(自然科学版),2005,21(5):425-428.WANG Qingli,ZHANG Yongdan,XIE Guangpeng,et al.Experimental study on eccentrically compressed concrete filled circular CFRP-steel tubular columns[J].Journal of Shenyang Jianzhu University(Science and Technology),2005,21(5):425-428.
[12]YU T,DONG S L,TENG J G,et al.Flexural behavior of hybrid FRP-concrete-steel double-skin tubular members[J].Journal of Composites for Construction,2006,10(5):443-452.
[13]王清湘,关宏波,崔文涛.GFRP套管混凝土长柱轴压力学性能试验[J].建筑结构,2010,40(11):80-83.WANG Qingxiang,GUAN Hongbo,CUI Wentao.Experimental study on mechanical properties of concrete filled GFRP tubular long columns under axial loading[J].Building Structure,2010,40(11):80-83.
[14]尤明庆,苏承东.砂岩孔道试样压拉应力下强度和破坏的研究[J].岩石力学与工程学报,2010,29(6):1096-1105.YOU Mingqing,SU Chengdong.Study of strength and failure of hollow cylinders and rings of sandstone under compression-tension stresses[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(6):1096-1105.
[15]李尚昆,冯晓伟,谢若泽,等.高应变率下纯水冰和杂质冰的动态力学行为[J].爆炸与冲击,2019,39(9):73-80.LI Shangkun,FENG Xiaowei,XIE Ruoze,et al.Dynamic compression property of distill-water ice and impurity-water ice at high strain rates[J].Explosion and Shock Waves,2019,39(9):73-80.
[16]LI D Y,WANG T,CHENG T J.Static and dynamic tensile failure characteristics of rock based on splitting test of circular ring[J].Transactions of Nonferrous Metals Society of China,2016,26(7):1912-1918.

相似文献/References:

[1]秦浩,刘磊,安华明,等.基于不同强度等级混凝土的动力学特性研究[J].中国安全生产科学技术,2019,15(12):115.[doi:10.11731/j.issn.1673-193x.2019.12.019]
 QIN Hao,LIU Lei,AN Huaming,et al.Study on dynamic characteristics of concrete based on different strength grades[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(5):115.[doi:10.11731/j.issn.1673-193x.2019.12.019]
[2]宗琦,王浩,汪海波.碳化砂浆轴向冲击动态力学特性与破碎形态分析[J].中国安全生产科学技术,2020,16(6):153.[doi:10.11731/j.issn.1673-193x.2020.06.025]
 ZONG Qi,WANG Hao,WANG Haibo.Analysis on dynamic mechanical characteristics and fracture morphology of carbonated mortar under axial impact[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(5):153.[doi:10.11731/j.issn.1673-193x.2020.06.025]
[3]汪海波,翟国良,王梦想,等.煤矿砂岩动态力学性能试验与分析方法研究*[J].中国安全生产科学技术,2021,17(5):53.[doi:10.11731/j.issn.1673-193x.2021.05.008]
 WANG Haibo,ZHAI Guoliang,WANG Mengxiang,et al.Research on dynamic mechanical performance test and analysis method of coal mine sandstone[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(5):53.[doi:10.11731/j.issn.1673-193x.2021.05.008]

备注/Memo

备注/Memo:
收稿日期: 2020-02-21
* 基金项目: 国家自然科学基金项目(51274009);安徽省博士后科研基金项目(2018B282)
作者简介: 张守旸,硕士研究生,主要研究方向为冲击动力学与爆破工程。
通信作者: 宗琦,博士,教授,主要研究方向为岩土工程与爆破工程。
更新日期/Last Update: 2020-06-10