|本期目录/Table of Contents|

[1]刘朝峰,张嘉鑫,杜金泽,等.基于SPA-VFRM的城市要害系统综合应急能力研究[J].中国安全生产科学技术,2019,15(7):26-31.[doi:10.11731/j.issn.1673-193x.2019.07.004]
 LIU Chaofeng,ZHANG Jiaxin,DU Jinze,et al.Research on comprehensive emergency capability of urban highconsequence system based on SPA-VFRM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(7):26-31.[doi:10.11731/j.issn.1673-193x.2019.07.004]
点击复制

基于SPA-VFRM的城市要害系统综合应急能力研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
15
期数:
2019年7期
页码:
26-31
栏目:
学术论著
出版日期:
2019-07-31

文章信息/Info

Title:
Research on comprehensive emergency capability of urban highconsequence system based on SPA-VFRM
文章编号:
1673-193X(2019)-07-0026-06
作者:
刘朝峰1张嘉鑫1杜金泽1郭增2王威3
(1.河北工业大学 土木与交通学院,天津 300401;
2.张家口职业技术学院 土木工程系,河北 张家口 075051;
3.北京工业大学 抗震减灾研究所,北京 100124)
Author(s):
LIU Chaofeng1 ZHANG Jiaxin1 DU Jinze1 GUO Zeng2 WANG Wei3
(1. School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China;
2. Department of Civil Engineering, Zhangjiakou Vocational and Technical College, Zhangjiakou Heibei 075051, China;
3. Institute of Earthquake Resistances and Disaster Reduction, Beijing University of Technology, Beijing 100124, China)
关键词:
要害系统灾害类型应急能力综合权重集对分析可变模糊识别模型
Keywords:
highconsequence system disaster type emergency capability integrated weight set pair analysis (SPA) variable fuzzy recognition model (VFRM)
分类号:
X913
DOI:
10.11731/j.issn.1673-193x.2019.07.004
文献标志码:
A
摘要:
为反映城市要害系统综合应急能力的发展现状及过程,在分析城市要害设施系统构成与面临的主要灾害类型基础上,提出从充分性、精确性、抵御性和及时性4个维度评价应急能力的思路,建立城市要害系统综合应急能力评估指标体系,并应用层次分析法与变异系数法确定指标综合权重,结合集对分析(SPA)与可变模糊识别模型(VFRM)构建城市要害系统综合应急能力的评价模型;运用该模型实证分析某市要害系统综合应急能力发展现状。实证表明:该市要害系统综合应急能力呈现“波浪式升高”的动态发展趋势,灾害抵御能力是构成综合应急能力的主要方面;3种方法的评价结果排序基本一致,表明该模型的评估结果稳健、可靠,能够有效反映城市要害系统综合应急能力发展情况。
Abstract:
In order to reflect the development status and process of the comprehensive emergency capability of urban highconsequence systems, the idea of evaluating the emergency capability from four dimensions of adequacy, accuracy, resilience, and timeliness was proposed based on the analysis of the system components of urban highconsequence facilities and the types of main disasters they faced. An evaluation index system for the comprehensive emergency capability of urban highconsequence systems was established, and the comprehensive weights of indexes were calculated by using the analytic hierarchy process and the coefficient of variation method. The evaluation model for the integrated emergency capability of urban highconsequence systems was established based on the set pair analysis (SPA) and variable fuzzy recognition model (VFRM). This model was used to empirically analyze the status quo of the development of comprehensive emergency capabilities for the highconsequence systems in a city. The results showed that the comprehensive emergency capability of highconsequence systems in the city presented a dynamic development trend of “wavelike uplift”. The disaster resilience capability was the main component of the comprehensive emergency capability. The ranking of the evaluation results by the three methods was basically the same, which indicated that the evaluation results of the model were robust and reliable, and it could effectively reflect the development status of integrated emergency capabilities of urban highconsequence systems.

参考文献/References:

[1]周君, 于幼云, 刘伊生. 城市基础设施安全系统的结构与和谐发展[J]. 中国安全科学学报, 2005, 15(12): 3-7.ZHOU Jun, YU Youyun, LIU Yisheng. Structure and harmonious development of urban infrastructure security system [J]. China Safety Science Journal, 2005, 15(12): 3-7.
[2]赵旭东, 陈志龙, 龚华栋, 等. 关键基础设施体系灾害毁伤恢复力研究综述[J]. 土木工程学报, 2017, 30(12): 62-71.ZHAO Xudong, CHEN Zhilong, GONG Huadong, et al. Review on the study of disaster resilience of critical infrastructure systems [J]. China Civil Engineering Journal, 2017, 30(12): 62-71.
[3]朱伟, 王晶晶, 杨玲. 城市重要基础设施灾害情景构建方法与应急能力评价研究[J]. 管理评论, 2016, 28(8): 59-65.ZHU Wei, WANG Jingjing, YANG Ling. A method research on scenario construction of critical infrastructure incidents and emergency capacity evaluation [J]. Management Review, 2016, 28(8): 59-65.
[4]Homeland Security Advisory Council.Report of the critical infrastructure task force[R]. Washington, D. C. : U. S. Department of Homeland Security, 2006.
[5]CONRAD R Z, ASAAD Y S. Post-disaster infrastructure restoration: A comparison of events for future planning [J]. International Journal of Disaster Risk Reduction, 2015, 13(9): 158-166.
[6]KAJITANI Y, SAGAI S. Modeling the interdependencies of critical infrastructures during natural disasters: a case of supply, communication and transportation infrastructures [J]. International Journal of Critical Infrastructure, 2009, 5 (4): 38-50.
[7]庞常. 地震作用下埋地供水管道土-管-水耦合动力学模型研究[D]. 成都: 西南交通大学, 2017.
[8]POLJANSEK K, BONO F, GUTIERREZ E, et al. Seismic risk assessment of interdependent critical infrastructure systems: the case of European gas and electricity networks [J]. Earthquake Engineering & Structural Dynamics, 2012, 41(1): 61-79.
[9]IMAI T, WADA S, KOIKE T. Seismic risk assessment and mitigation for the existing lifeline [J]. Journal of Earthquake and Tsunami, 2011, 5(1): 31-45.
[10]SELCUK-KESTEL A S, DUZGUN H S, ODUNCUOGLU L. A GIS-based software for lifeline reliability analysis under seismic hazard [J]. Computers & Geosciences, 2012, 42(3): 37-46.
[11]SONG J H, OK S Y. Multi-scale system reliability analysis of lifeline networks under earthquake hazards [J]. Earthquake Engineering & Structural Dynamics, 2010, 39(3): 259-279.
[12]陈文红. 城市基础设施防灾能力评价体系及其应用研究[D]. 北京: 首都经济贸易大学, 2016.
[13]刘婷婷. 城市基础设施防灾能力评价及防灾能力提升规划策略[J]. 规划师, 2014, 30(7): 102-108.LIU Tingting. Evaluation and improvement of disaster prevention ability of urban infrastructure [J]. Planners, 2014, 30(7):102-108.
[14]LIU C F, ZUO X J. A study on dynamic evaluation of urban integrated natural disaster risk based on vague set and information axiom [J]. Natural Hazards, 2015, 78(3): 1501-1516.
[15]AZEVEDO J, GUERREIRO L, BENTO R, et al. Seismic vulnerability of lifelines in the greater Lisbon area [J]. Bulletin of Earthquake Engineering, 2010, 8(1): 157-180.
[16]刘朝峰, 姜力本, 王威, 等. 城市埋地管道占压风险评估实用方法研究[J]. 中国安全生产科学技术, 2017, 13(2): 188-222.LIU Chaofeng, JIANG Liben, WANG Wei, et al. Research on practical method for occupying risk assessment of urban buried pipelines [J]. Journal of Safety Science and Technology, 2017, 13(2): 188-222.
[17]VUGRIN E D, WARREN D E, EHLEN M A. A resilience assessment framework for infrastructure and economic system: quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane [J]. Process Safety Progress, 2011, 30(3): 280-290.
[18]赵克勤. 集对分析及其初步应用[M]. 杭州: 浙江科学技术出版社, 2000.
[19]陈守煜. 可变模糊集理论与模型及其应用[M]. 大连:大连理工大学出版社, 2009.
[20]吴成国, 王义民, 唐言明, 等. 基于集对分析的洪水危险性评价可变模糊识别模型[J]. 西北农林科技大学学报(自然科学版), 2012, 40(1): 221-226.WU Chengguo, WANG Yimin, TANG Yanming, et al. Variable fuzzy recognition model for the flood hazard assessment based on Set Pair Analysis [J]. Journal of Northwest A & F University (Nat. Sci. Ed.), 2012, 40(1): 221-226.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2018-09-12
* 基金项目: 河北省自然科学基金项目(E2019202470);河北省高等学校科学技术研究青年基金项目(QN2018094);国家社会科学基金项目(18CGL019)
作者简介: 刘朝峰,博士,副教授,主要研究方向为城市与基础设施安全减灾。
通信作者: 郭增,硕士,副教授,主要研究方向为工程防灾。
更新日期/Last Update: 2019-08-07