|本期目录/Table of Contents|

[1]吴锴,张宏.基于有限元的局部突变位移载荷下埋地管道力学分析[J].中国安全生产科学技术,2019,15(4):59-64.[doi:10.11731/j.issn.1673-193x.2019.04.009]
 WU Kai,ZHANG Hong.Finite element analysis of the buried pipelines subjected to abrupt displacement load locally[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(4):59-64.[doi:10.11731/j.issn.1673-193x.2019.04.009]
点击复制

基于有限元的局部突变位移载荷下埋地管道力学分析
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
15
期数:
2019年4期
页码:
59-64
栏目:
职业安全卫生管理与技术
出版日期:
2019-04-30

文章信息/Info

Title:
Finite element analysis of the buried pipelines subjected to abrupt displacement load locally
文章编号:
1673-193X(2019)-03-0059-06
作者:
吴锴1 张宏2
(1. 中国石油大学(北京) 安全与海洋工程学院,北京 102249;2. 中国石油大学(北京) 机械与储运工程学院,北京 102249)
Author(s):
WU Kai1 ZHANG Hong2
(1. College of Safety and Ocean Engineering, China University of Petroleum(Beijing), Beijing 102249, China;2. College of Mechanical and Transportation Engineering, China University of Petroleum(Beijing), Beijing 102249, China)
关键词:
突变型位移荷载埋地管道力学响应有限元方法
Keywords:
abrupt displacement displacement load buried pipeline mechanical response finite element
分类号:
X937;TE973.1
DOI:
10.11731/j.issn.1673-193x.2019.04.009
文献标志码:
A
摘要:
冻土融沉、盐渍土溶陷等地质灾害会导致局部土壤产生一定位移,对埋地长输管道安全性构成威胁。为保障埋地管道的安全运行,建立了局部突变型位移载荷作用下埋地管道力学分析模型,采用非线性土弹簧描述管土相互作用,分析了局部突变区域长度及突变位移量对埋地管道受力的影响。研究结果表明:因局部突变区长度与突变位移量的不同,管道存在3种受力状态,当局部突变区域长度大于临界突变区长度时,管道轴心应变与弯曲应变在突变区域内不产生耦合,此时在突变区域两端可等效为2个垂直正断层,即为第一种受力状态;当突变区域长度小于临界突变区长度时,随着突变位移的增加,管道应变随之增加,管道轴心应变与弯曲应变在突变区域内不断叠加,即为第二种受力状态;在第二种受力状态基础上,当突变位移大于临界突变位移时,管道应变不再发生变化,管道等效为受到垂向均布荷载的作用,即为第三种受力状态。研究结果可为工程中管道穿越地质灾害区域的设计提供参考。
Abstract:
Geological disasters such as thawing settlement of the frozen soil, melt sinking of the saline soil, which may cause displacement of local soil, are a primary threat to the integrity of the pipeline, and can also cause catastrophic consequence in serious accidents. In order to ensure the safe operation of the buried pipeline, a numerical model simulating the buried pipeline under the local displacement of soil in geological hazards was established by using finite element method, where the nonlinear spring was used to simulate the interaction between the pipe and soil. Effects of the local abrupt zone length as well as the soil displacement on mechanical conditions of pipeline were discussed in detailed. The results show that different abrupt zone lengths and soil displacements lead to three different kinds of mechanical conditions. When the local abrupt zone length is larger than the critical value, there is no interaction between axial strain and bending strain, and the geological hazard could be divided into two vertical normal fault at two sides of the abrupt zone, which results in independence between the strain and the value of abrupt zone length. This condition can be defined as the first condition. When the abrupt zone length is shorter than the critical value, the value of pipe strain increases with the increasing of the soil displacement, the axial strain and bending strain of pipeline are superimposed continuously in the abrupt region, and it is called the second condition. Based on the second state, when the abrupt displacement increases to the critical abrupt displacement, the strain of the pipeline will be no longer changed, and the pipeline is equivalent to being subjected to the uniform load, which can be defined as the third condition.

参考文献/References:

[1]黄维和,郑洪龙,王婷. 我国油气管道建设运行管理技术及发展展望[J].油气储运,2014,33(12):1259-1262. HUANG Weihe, ZHENG Honglong, WANG Ting. Construction and operation management technology and prospect of oil and gas pipelines in China[J].Oil & Gas Storage and Transportation,2014,33(12):1259-1262.
[2]高鹏,王培鸿,王海英,等. 2014年中国油气管道建设新进展[J].国际石油经济,2015,23(3):68-74. GAO Peng, WANG Peihong, WANG Haiying, et al. Progress in China’s oil and gas pipeline construction in 2014[J].International Petroleum Economics,2015,23(3):68-74.
[3]张宏,崔红升. 基于应变的管道强度设计方法的适用性[J].油气储运,2012,31(12):952-954. ZHANG Hong,CUI Hongsheng. The applicability of strain-based pipeline strength design method[J].Gas Storage and Transportation,2012,31(12):952-954.
[4]刘啸奔,张宏,李勐,等. 断层作用下埋地管道应变分析方法研究进展[J].油气储运,35(8):799-807. LIU Xiaoben, ZHANG Hong, LI Meng, et al. Research progress of strain analysis methods for buried pipelines under faulting process[J].Oil & Gas Storage and Transportation,2016,35(8):799-807.
[5]张宏,刘啸奔. 地质灾害作用下油气管道设计应变计算模型[J].油气储运,2017,36(1): 91-97. ZHANG Hong, LIU Xiaoben. Design strain calculation model for oil and gas pipelines subject to geological hazards[J]. Gas Storage and Transportation,2017,36(1):91-97.
[6]NEWMARK N M, HALL W J. Pipeline design to resist large fault displacement[C].Michigan:The U S National Conference on Earthquake Engineering,1975:416-425.
[7]KENNEDY R P, CHOW A W, WILLIAMSON R A. Fault movement effects on buried oil pipeline[J].Transport Engineering Journal,1977,103(5):617-633.
[8]WANG R L, YEH Y H. A refined seismic analysis and design of buried pipeline for fault movement[J].Earthquake Engineering and Structural Dynamics,1985,13(1): 75-96.
[9]KARAMITROS D K, BOUCKOVALAS G D, KOURETZIS G P. Stress analysis of buried steel pipelines at strike-slip fault crossings[J].Soil Dynamics and Earthquake Engineering,2007,27(3):200-211.
[10]KARAMITROS D K, BOUCKOVALAS G D, KOURETZIS G P, et al. An analytical method for strength verification of buried steel pipelines at normal fault crossings[J].Soil Dynamics and Earthquake Engineering, 2011,31(11):1452-1464.
[11]TRIFONOV O V, CHERNIY V P. A semi-analytical approach to a nonlinear stress-strain analysis of buried steel pipelines crossing active faults[J].Soil Dynamics and Earthquake Engineering,2010,30(11):1298-1308.
[12]TRIFONOV O V, CHERNIY V P. Elastoplastic stress-strain analysis of buried steel pipelines subjected to fault displacements with account for service loads[J].Soil Dynamics & Earthquake Engineering,2012, 33(1):54-62.
[13]Wang B, Li X, Zhou J. Strain analysis of buried steel pipelines across strike-slip faults[J].Journal of Central South University of Technology,2011,5(5):1654-1661.
[14]TOSHIO T, TOSHI N, TOSHIYUKi. Study on behavior of buried pipes in liquefaction ground[C]. 12th World Conference on Earthquake Engineering, 2000:1215.
[15]王晓霖,帅健,张建强.开采沉陷区埋地管道力学反应分析[J]. 岩土力学, 2011, 32(11): 3373-3378+3386. WANG Xiaolin. SHUAI Jian, ZHANG Jianqiang. Mechanical response analysis of buried pipeline crossing mining subsidence area[J]. Rock and Soil Mechanics, 2011, 32(11): 3373-3378+3386.
[16]夏梦莹,张宏. 基于应变准则的采空暗悬管道的安全性评价[J].油气储运,2016,35(11):1159-1163. XIA Mengying, ZHANG Hong. Safety evaluation of the hidden suspended pipeline based on strain criteria[J].Oil & Gas Storage and Transportation,2016,35(11):1159-1163.
[17]夏梦莹,张宏,王宝栋,等. 基于壳单元的连续型采空区埋地管道应变分析[J].油气储运,2018,37(3):256-262. XIA Mengying, ZHANG Hong, WANG Baodong, et al. Strain analysis of buried pipelines in continuous mining subsidence areas based on shell element[J].Oil & Gas Storage and Transportation,2018,37(3):256-262.
[18]林均岐,李祚华,胡明祎. 不均匀场地土液化引起的地下管道上浮反应研究[J].地震工程与工程振动,2004,24(4):143-147. LIN Junqi, LI Zuohua, HU Mingwei. Study on floatation response of buried pipelines due to non-homogeneous soil liquefaction[J].Earthquake Engineering and Engineering Vibration,2004,24(04):143-147.
[19]林均岐,李祚华,胡明袆,等. 液化土中管道上浮反应的影响因素研究[J].地震工程与工程振动,2005,25(4):130-134. LIN Junqi, LI Zuohua, HU Mingwei, et al. Study on influential factors of buried pipe line floatation response due to soil liquefaction[J].Earthquake Engineering and Engineering Vibration,2005,25(4):130-134.
[20]American Lifelines Alliance-American Society of Civil Engineers. Guidelines for the Design of Buried Steel Pipe(with addenda through February 2005)[S].USA,2005.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2019-02-26
基金项目: 国家重点研发计划项目(2016YFC0802105); 中国石油大学(北京)科研基金项目(2462018YJRC019)
作者简介: 吴锴,博士研究生,主要研究方向为管道穿越设计。
更新日期/Last Update: 2019-05-09