|本期目录/Table of Contents|

[1]王玲玲,王兆丰,霍肖肖,等.高温高压下煤孔隙结构的变化对瓦斯吸附特性的影响[J].中国安全生产科学技术,2018,14(12):97-101.[doi:10.11731/j.issn.1673-193x.2018.12.015]
 WANG Lingling,WANG Zhaofeng,HUO Xiaoxiao,et al.Influence of pore structure change on gas adsorption characteristics of coal under high temperature and high pressure[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(12):97-101.[doi:10.11731/j.issn.1673-193x.2018.12.015]
点击复制

高温高压下煤孔隙结构的变化对瓦斯吸附特性的影响
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年12期
页码:
97-101
栏目:
职业安全卫生管理与技术
出版日期:
2018-12-31

文章信息/Info

Title:
Influence of pore structure change on gas adsorption characteristics of coal under high temperature and high pressure
文章编号:
1673-193X(2018)-12-0097-05
作者:
王玲玲1王兆丰12霍肖肖1刘勉1
(1.河南理工大学 安全科学与工程学院,河南 焦作 454000;2.煤矿灾害预防与抢险救灾教育部工程研究中心,河南 焦作 454000)
Author(s):
WANG Lingling1 WANG Zhaofeng12 HUO Xiaoxiao1 LIU Mian1
(1. School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo Henan 454000, China;2. MOE Engineering Center of Mine Disaster Prevention and Rescue, Jiaozuo Henan 454000, China)
关键词:
吸附特性高温高压孔隙结构等温吸附曲线
Keywords:
adsorption characteristics high temperature and high pressure pore structure isothermal adsorption curve
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2018.12.015
文献标志码:
A
摘要:
为了研究高温高压条件下煤孔隙结构变化对瓦斯吸附特性的影响,选取九里山矿无烟煤,在压力为7 MPa、温度为40~130℃的条件下进行等温吸附实验和压汞实验。研究结果表明:煤样对甲烷的等温吸附曲线在该压力、温度条件下符合Ⅰ型吸附曲线特性,吸附规律符合Langmuir吸附模型;在压力7 MPa和温度130℃条件下,煤样的孔隙结构发生一定的变化,煤的比表面积增大、累计孔体积降低,可见孔及裂隙的数量比例增高,加强了煤样孔隙之间的连通度,导致原本吸附在煤样表面的甲烷分子大量解吸;在压力不变的情况下,随着温度的不断增高,煤的极限吸附量逐渐减小,其主要原因是样品孔隙结构的破坏和分子间作用力的变化。
Abstract:
In order to investigate the influence of pore structure change on the gas adsorption characteristics of coal under the conditions of high temperature and high pressure, the isothermal adsorption experiments and mercury intrusion tests were carried out under the conditions of 7 MPa pressure and 40~130 ℃ temperature by using the anthracite of Jiulishan Mine. The results showed that the isothermal adsorption curve of coal sample to methane was in accordance with the characteristics of type Ⅰ adsorption curve under these pressure and temperature conditions, and the adsorption laws conformed to the Langmuir adsorption model. Under the conditions of 7 MPa pressure and 130℃ temperature, the pore structure of coal samples changed, the specific surface area of coal increased, the cumulative pore volume decreased, and the proportion of the visible pores and cracks increased, which strengthened the connectivity between the pores of coal samples, so that the methane molecules adsorbed on the surface of coal samples originally desorbed largely. Under the situation of constant pressure, the higher the temperature, the lower the limit adsorption volume of coal, and the reasons of this phenomenon were the destroy of pore structure in the samples and the change of intermolecular force.

参考文献/References:

[1]桑树勋,朱炎铭,张时音,等. 煤吸附气体的固气作用机理(Ⅰ)—煤孔隙结构与固气作用[J]. 天然气工业,2005,25(1):13-15. SANG Shuxun,ZHU Yanming,ZHANG Shiyin,et al. Silid-gas interaction mechanism of coal-adsorbed gas(Ⅰ)—coal pore structure and soild-gas reservoir [J]. Natural Gas Industry,2005,25(1):13-15.
[2]桑树勋,朱炎铭,张井,等. 煤吸附气体的固气作用机理(Ⅱ)—煤吸附气体的物理过程与理论模型[J]. 天然气工业,2005,25(1):16-18. SANG Shuxun,ZHU Yanming,ZHANG Jing,et al. Silid-gas interaction mechanism of coal-adsorbed gas(Ⅱ)—physical process and theoretical model of coal gas adsorption [J]. Natural Gas Industry,2005,25(1):16-18.
[3]欧成华,李士伦,杜建芬,等. 煤层气吸附机理研究的发展与展望[J]. 西南石油学院学报,2003,25(5):34-38. OU Chenghua,LI Shilun,DU Jianfen,et al. Development and prospect on adsorption mechanism of coalbed methane in coal seams [J]. Journal of Southwest Petroleum Institute,2003,25(5):34-38.
[4]陈昌国. 煤的物理化学结构和吸附机理的研究[D]. 重庆:重庆大学,1995.
[5]陈向军,刘军,王林,等. 不同变质程度煤的孔径分布及其对吸附常数的影响[J]. 煤炭学报,2013,38(2):294-300. CHEN Xiangjun,LIU Jun,WANG Lin,et al. Influence of pore size distribution of different metamorphic grade of coal on adsorption constant [J]. Journal of China Coal Society,2013,38(2):294-300.
[6]张国华,韩永辉,侯凤才,等. 含瓦斯煤带压解吸规律的实验研究[J]. 黑龙江科技学院学报,2011,21(1):31-35. ZHANG Guohua,HAN Yonghui,HOU Fengcai,et al. Experimental study on gas pressure desorption law governing coal containing gas [J]. Journal of Heilongjiang University of Science and Technology,2011,21(1):31-35.
[7]马东民,张遂安,蔺亚兵. 煤的等温吸附-解吸实验及其精确拟合[J]. 煤炭学报,2011,36(3):477-480. MA Dongmin, ZHANG Suian, LIN Yabing. Isothermal adsorption and desorption experiment of coal and experimental results accuracy fitting [J]. Journal of China Coal Society,2011,36(3): 477-480.
[8]钟玲文,郑玉柱,员争荣,等. 煤在温度和压力综合影响下的吸附性能及气含量预测[J]. 煤炭学报,2002,27(6):581-585. ZHONG Lingwen,ZHENG Yuzhu,YUAN Zhengrong,et al. The adsorption capability of coal under integrated influence of temperature and pressure and predicted of content quantity of coal bed gas [J]. Journal of China Coal Society, 2002,27(6): 581-585.
[9]钟玲文.煤的吸附常数与最高试验压力关系的研究[J]. 煤田地质与勘探,2001,29(4):25-28. ZHONG Lingwen. Study of the relationship between coal adsorption constent and maximum pressure used [J]. Coal Geology & Exploration, 2001,29(4): 25-28.
[10]赵丽娟,秦勇,WANG G,等. 高温高压条件下深部煤层气吸附行为[J]. 高校地质学报,2013,19(4):648-654. ZHAO Lijuan, QIN Yong, WANG G, et al. Adsorption behavior of deep coalbed methane under high temperatures and pressures [J]. Geological Journal of China Universities, 2013,19(4): 648-654.
[11]聂百胜,杨涛,李祥春,等. 煤粒瓦斯解吸扩散规律试验[J]. 中国矿业大学学报,2013,42(6):975-981. NIE Baisheng, YANG Tao, LI Xiangchun, et al. Research on diffusion of methane in coal particles [J]. Journal of China University of Mining, 2013,42(6): 975-981.
[12]刘彦伟,刘明举. 粒度对软硬煤粒瓦斯解吸扩散差异性的影响[J]. 煤炭学报,2015,40(3):579-587. LIU Yanwei, LIU Mingju. Effect of particle size on difference of gas desorption and diffusion between soft coal and hard coal [J]. Journal of China Coal Society,2015,40(3): 579-587.
[13]钟玲文,张新民. 煤的吸附能力与其煤化程度和煤岩组成间的关系[J]. 煤田地质与勘探,1990,18(4):29-35. ZHONG Lingwen,ZHANG Xinmin. Relationship between adsorption capacity of coal and its degree of coalification and composition of coal and rock [J]. Coal Geology & Exploration, 1990,18(4): 29-35.
[14]AMARASEKERA G,SCARLETT M J , MAINWARING D E . Micropore size distributions and specific interactions in coals[J]. Fuel,1995,74(1):115-118.
[15]顾熠凡,王兆丰,戚灵灵. 低透气性煤孔隙结构研究[J]. 煤矿安全,2017,48(2):21-25. GU Yifan, WANG Zhaofeng, QI Lingling. Research on pore structure of coal with low permeability [J]. Safety in Coal Mines,2017,48(2): 21-25.
[16]霍多特 B B. 煤与瓦斯突出[M]. 宋士钊,王佑安,译.北京:中国工业出版社,1966.
[17]近藤精一,石川达雄,安部郁夫.吸附科学[M].李国希,译. 2版. 北京:化学工业出版社,2010:37-40.
[18]李希建,李维维,黄海帆,等. 深部页岩高温高压吸附特性分析[J]. 特种油气藏,2017,24(3):129-134. LI Xijian, LI Weiwei, HUANG Haifan, et al. Analysis on adsorption characteristics of deep shale under high temperature and high pressure [J]. Special Oil and Gas Reservoirs, 2017,24(3): 129-134.

相似文献/References:

[1]王汉,张智,李玉飞,等.基于环空带压临界值确定高温高压气井临界产量[J].中国安全生产科学技术,2019,15(10):12.[doi:10.11731/j.issn.1673-193x.2019.10.002]
 WANG Han,ZHANG Zhi,LI Yufei,et al.Determining critical production of HTHP gas well based on critical value of annulus pressure[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(12):12.[doi:10.11731/j.issn.1673-193x.2019.10.002]
[2]张智,王博,刘和兴,等.南海某深水高温高压气井SS-15型井口头系统薄弱点安全评价*[J].中国安全生产科学技术,2023,19(4):107.[doi:10.11731/j.issn.1673-193x.2023.04.015]
 ZHANG Zhi,WANG Bo,LIU Hexing,et al.Safety evaluation on weak points of SS-15 wellhead system in a deep water high temperature and high pressure gas well in South China Sea[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(12):107.[doi:10.11731/j.issn.1673-193x.2023.04.015]

备注/Memo

备注/Memo:
收稿日期: 2018-10-10
基金项目: 河南省基础与前沿技术研究项目(162300410038);河南省教育厅高等学校重点科研项目(15A440007)
作者简介: 王玲玲,硕士研究生,主要研究方向为瓦斯灾害预测与防治。
更新日期/Last Update: 2019-01-03