|本期目录/Table of Contents|

[1]王兆丰,刘勉,韩恩光,等.含瓦斯煤低温取芯过程煤芯温度变化规律实验研究[J].中国安全生产科学技术,2018,14(11):101-107.[doi:10.11731/j.issn.1673-193x.2018.11.016]
 WANG Zhaofeng,LIU Mian,HAN Enguang,et al.Experimental study on change laws of coal core temperature during low temperature coring process of coal containing gas[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(11):101-107.[doi:10.11731/j.issn.1673-193x.2018.11.016]
点击复制

含瓦斯煤低温取芯过程煤芯温度变化规律实验研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年11期
页码:
101-107
栏目:
职业安全卫生管理与技术
出版日期:
2018-11-30

文章信息/Info

Title:
Experimental study on change laws of coal core temperature during low temperature coring process of coal containing gas
文章编号:
1673-193X(2018)-11-0101-07
作者:
王兆丰12刘勉1韩恩光1马向攀1
(1.河南理工大学 安全科学与工程学院,河南 焦作454000;2.煤矿灾害预防与抢险救灾教育部工程研究中心,河南 焦作454000)
Author(s):
WANG Zhaofeng12 LIU Mian1 HAN Enguang1 MA Xiangpan1
(1. School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo Henan 454000, China;2. MOE Engineering Center of Mine Disaster Prevention and Rescue, Jiaozuo Henan 454000, China)
关键词:
低温取芯瓦斯损失量冷冻剂煤芯温度“U”形变化
Keywords:
low temperature coring gas loss refrigerant coal core temperature “U” shape change
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2018.11.016
文献标志码:
A
摘要:
为避免现有的煤层瓦斯含量井下测定方法在取样过程中出现瓦斯损失量较多的情况,提出了低温(0℃及以下)取芯的方法。煤芯温度是影响取芯过程瓦斯损失量的主要因素,使用自制模拟装置,对含瓦斯煤低温环境取芯过程温度变化规律进行了实验研究。研究结果表明:在定量冷冻剂的条件下,保持初始吸附平衡压力不变,随着外加热源热量输出强度的增加,煤芯在低温环境(0℃及以下)持续时间和升温时间均减小,降到所需低温环境的速度很快,均在8 min以内;保持外加热源热量输出强度不变,改变初始吸附平衡压力,煤芯温度降至所需低温环境时间在8 min以内,且低温环境持续时间都能稳定在130 min以上。在实验过程中,煤芯温度呈“U”形变化,经历快速下降、低温维持、温度回升3个阶段。
Abstract:
In view of the situation that there is more gas loss during the sampling process when using the existing underground measurement methods of gas content in the coal seam, a method of low temperature coring (0℃ and below) was proposed. The coal core temperature is the main factor affecting the gas loss during the coring process, and the experimental study was carried out on the change laws of temperature during the coring process of coal containing gas in the low temperature environment by using the selfmade simulation device. The results showed that when the quantity of refrigerant was fixed and keeping the initial adsorption equilibrium pressure unchanged, both the duration of low temperature environment and the temperature rise time of coal core decreased with the increase of heat output intensity of the external heat source, and the speeds of decreasing to the required low temperature environment were very fast, all within 8 minutes. When keeping the heat output intensity of the external heat source unchanged and the initial adsorption equilibrium pressure changed, the time of coal core temperature decreasing to the required low temperature environment were within 8 minutes, and the duration of low temperature environment were stable for more than 130 minutes. The coal core temperature presented a “U” shape change during the experiment process, and experienced three stages including rapid decrease, low temperature maintenance and temperature recovery.

参考文献/References:

[1]张子敏. 瓦斯地质学[M]. 徐州:中国矿业大学出版社, 2009.
[2]胡千庭, 邹银辉, 文光才, 等. 瓦斯含量法预测突出危险新技术[J]. 煤炭学报, 2007,32(3): 276-280. HU Qianting, ZOU Yinhui, WEN Guangcai, et al. New technology of outburst danger prediction by gas content[J]. Journal of China Coal Society,2007,32(3):276-280.
[3]CHEN Shao Jie, CHENG Gen Yin,et al. New technology of determining coalbed gas content by reversion seal coring[J]. Journal of Coal Science and Engineering (China), 2012,18(1): 35-38.
[4]姜海纳, 程远平, 安丰华. 淮北矿区煤层瓦斯含量直接测定法中有效取样时间研究[J]. 采矿与安全工程学报, 2013,30(1): 143-148. JIANG Haina,CHENG Yuanping,AN Fenghua.Research on effective sampling time in direct measurement of gas content in Huaibei coal seams[J]. Journal of Mining&Safety Engineering,2013,30(1):143-148.
[5]张淑同. 井下瓦斯含量直接法测定关键技术研究[J]. 采矿与安全工程学报, 2014,31(2): 328-332. ZHANG Shutong. Key technology for gas content direct determination methodin underground mine[J]. Journal of Mining&Safety Engineering,2014,31(2):328-332.
[6]张宏图, 魏建平, 王云刚, 等. 煤层瓦斯含量测定定点取样方法研究进展[J]. 中国安全生产科学技术, 2016,12(1): 186-192. ZHANG Hongtu, WEI Jianping, WANG Yungang, et al. Sampling methods for coalbed gas content direct determination[J].Journal of Safety Science and Technology,2016,12(1): 186-192.
[7]景兴鹏. 机械密闭取芯瓦斯含量测定集成技术研究[J]. 中国安全生产科学技术, 2015,11(11): 59-63. JING Xingpeng. Study on integrate technique of mechanical sealed coring and methane content measuring[J]. Journal of Safety Science and Technology, 2015,11(11): 59-63.
[8]WANG Jikun,CUI xia. Infrared measurement of temperature field in coal gas desorption[J]. International Journal of Mining Science and Technology, 2014,24(1): 57-61.
[9]姜永东, 阳兴洋, 刘元雪, 等. 不同温度条件下煤中甲烷解吸特性的实验研究[J]. 矿业安全与环保, 2012,39(2): 6-8. JIANG Yongdong,YANG Xingyang,LIU Yuanxue,et al. Experimental study on methane desorption characteristic of coal under condition of different temperature[J]. Mining Safety & Environmental Protection,2012,39(2):6-8.
[10]李志强, 段振伟, 景国勋, 等. 不同温度下煤粒瓦斯扩散特性试验研究与数值模拟[J]. 中国安全科学学报, 2012,22(4): 38-42. LI Zhiqiang,DUAN Zhenwei,JING Guoxun,et al. Experimental study on gas diffusion characteristics from coal at different temperatures and their numerical simulation[J]. China Safety Science Journal,2012,22(4):38-42.
[11]聂百胜, 杨涛, 李祥春, 等. 煤粒瓦斯解吸扩散规律实验[J]. 中国矿业大学学报, 2013,42(6): 975-981. NIE Baisheng,YANG Tao,LI Xiangchun,et al. Research on diffusion of methane in coal particles[J]. Journal of China University of Mining&Technology,2013,42(6): 975-981.
[12]李志强, 王登科, 宋党育. 新扩散模型下温度对煤粒瓦斯动态扩散系数的影响[J]. 煤炭学报, 2015,40(5): 1055-1064. LI Zhiqiang,WANG Dengke,SONG Dangyu. Influence of temperature on dynamic diffusion coefficient of CH4 into coal particles by new diffusion model[J]. Journal of China Coal Society,2015,40(5):1055-1064.
[13]WANG Z F, TANG X, YUE G W, et al. Physical simulation of temperature influence on methane sorption and kinetics in coal: Benefits of temperature under 273.15 K[J]. Fuel, 2015(158):207-216.
[14]王兆丰, 谢策, 祁晨君, 等. 低温对煤中瓦斯放散的抑制作用[J]. 煤矿安全, 2016,47(6): 16-19. WANG Zhaofeng,XIE Ce,QI Chenjun,et al. Inhibitory effect of low temperature on methane diffusion in Coal [J]. Safety in Coal Mines,2016,47(6):16-19.
[15]王兆丰, 岳高伟, 康博, 等. 低温环境对煤的瓦斯解吸抑制效应试验[J]. 重庆大学学报, 2014,37(9): 106-112. WANG Zhaofeng,YUE Gaowei,KANG Bo,et al. Gas desorption inhibitory effect of coal in low temperature environment[J]. Journal of Chongqing University,2014,37(9):106-112.
[16]王兆丰. 空气、水和泥浆介质中煤的瓦斯解吸规律与应用研究[D].徐州: 中国矿业大学, 2001.
[17]任浩洋, 王兆丰. 测定瓦斯含量取样方式存在问题分析及解决对策[J]. 煤矿安全, 2015,46(4): 148-151. REN Haoyang,WANG Zhaofeng. Problem analysis and solutions about sampling way of gas content determination[J].Safety in Coal Mines,2015,46(4):148-151.
[18]王志国, 刘扬, 刘晓燕, 等. 热力学系统定量化研究之一:模型及基本概念[C]// 中国工程热物理学会.工程热力学与能源利用学术会议,2008.
[19]英克鲁佩勒. 传热和传质基本原理: 第6版[M]. 北京:化学工业出版社, 2007.

相似文献/References:

[1]王兆丰,柯巍,马向攀.低温取芯过程热传递方式的数值模拟和实验研究[J].中国安全生产科学技术,2018,14(1):35.[doi:10.11731/j.issn.1673-193x.2018.01.006]
 WANG Zhaofeng,KE Wei,MA Xiangpan.Numerical simulation and experimental study on way of heat transfer during low temperature coring process[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(11):35.[doi:10.11731/j.issn.1673-193x.2018.01.006]

备注/Memo

备注/Memo:
收稿日期: 2018-08-21
基金项目: 国家自然科学基金项目(51274090);河南省高校科技创新团队计划项目(17IRSTHN030);河南省基础与前沿技术研究项目(162300410038)
作者简介: 王兆丰,博士,研究员,主要研究方向为瓦斯灾害预测与防治。
通信作者: 刘勉,硕士研究生,主要研究方向为瓦斯灾害预测与防治。
更新日期/Last Update: 2018-12-03